Estimation of service life characteristics for the valuation of human resources

Thomas Arnold Barta
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Industrial Engineering Commons

Recommended Citation

Barta, Thomas Arnold, "Estimation of service life characteristics for the valuation of human resources " (1975). Retrospective Theses and Dissertations. 5186.
https://lib.dr.iastate.edu/rtd/5186

INFORMATION TO USERS

This materiai was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved durinig exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper reft hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additionai charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms

75-17,379

BARTA, Thomas Arnold, 1935-
ESTIMATION OF SERVICE LIFE CHARACTERISTICS FOR THE VALUATION OF HUMAN RESOURCES.
Iowa State University, Ph.D., 1975
Engineering, industrial

Xerox University Microfilms, Ann Arbor, Michlgen 48106

Estimation of service life characteristicsfor the valuation of human resourcesby
Thomas Arnola Barta
A Dissertation Submitred to the
Graduate Faculty in Partial Fulfiliment of
The Requirements for the Degree of
DOCTOR OF PHILOSOPHY
Department: Industrial EngineeringMajor: Engineering valuation
Approved:
Signature was redacted for privacy
In Charge of Major $\begin{gathered}\text { Hork }\end{gathered}$
Signature was redacted for privacy
Fot the Majci Department
Signature was redacted for privacy.
For the Gliduate College
Iowa State University Ames, Iowa1975

TABLE CF CONTENTS

Page
INTEUDUCTION 1
LITERATUPE REVIEW 3
OBJECTIVES 9
LIfE ANALYSIS 11
valuaticn of human resources 21
Engineering valuation 21
Engincering economy 22
Present worth 22
Gradients 23
Markov chains 24
EXPERIMENTAI EROCEDURE 32
General 32
Fetirement rate 34
Griqinal groups 41
Simulated plant balance method 43
STATISTICAL DESIGN 45
Criqinal group 46
Fetirement rate 47
Application 49
Inteqration of retirement frequency curve 49
Oriqinal qroup chi-square test program 52
Retirement rate chi-square test program 52
Page
EXPERIMENTAL DATA RESULTS 53
Fetirement rate 53
Criqinal qroups 56
Simulated plant balances 59
Chi-square test results 61
Curve fitting 64
APPLICATION TO INVESTMENT DECISIONS 73
A program for computing present worth 73 of future services
An econcmic justification 77
Markov chain example 80
CONCLUSICNS 85
Frimary 85
Secondary 86
BIBLICGRAPHY 88
ACKNCWLEDGEMENTS 93
APPENDIX A: COMPUTER PROGRAM LISTINGS 94
AFEENDIX E: CCMPARISON OF STUB, SMOOTHED AND 110 IOWA SURVIVOR CURVES
APPENDIX C: HISTORICAL ARRANGEMENT OF DATA, TREND 157 ANALYSIS. SIMULATED PLANT RECORD TAELES, AND CHI-SQUARE DATA

INT FODDCTION

It is recoqnized that people are valuable to an orqanizaticn. The value of an orqanization is derived from the ability of the employees to render services that have economic vaiue. It costs money to recruit and train a workforce to the point where it becomes a smoothly functioning taam, and though it is generally accepted tinat people are an economic resource at least as important as mechanical equipment. fen organizations attempt to account for their iuman resources. In spite of the comments in many annual reforts that "people are our most important assets." it is futile to look for a valuation of these assets in the report. Conventional accounting systems treat investments in human resources as expenses rather than assets, so there is no encouragement for a manager to york toward an increase in the value of those human assets, even though it is known that this value can be appreciated or depleted as a result of the way pecple are managed.

In an effort to correct these inequities, attempts have been made to measure the value of an organization's human resources. Durinq the past decade, there has been a groying interest in the idea of accounting for people as orqanizaticnal resources (17). This interest has led to an emerqing field of research known as "Human Resources

```
Accounting." Since there is a growing awareness of the
importance of people to organizational effectiveness, the
siqnificance of stuly in this area can only increase in
relevance, especially in employee-intensive organizations
includinq industrial as well as universities, hospitals,
athletic teams, and consulting firms.
```

Research has been concerned with answering questions such as those that follow. Shouldn't employees be treated at least as well as capital equipment, by providing for their maintenance and depreciation (9)? What is the value of the human resources in an organization (17) (18) ? If a functioning orqanization had to start up tomorrow without any trained employees, what would be the cost (32)? what is the cost to the company of a terminated, quit, or transferred employee (1) (39) (40) (41)? Would there be any siqnificant difference in management decisions if the value of human resources were known (12)?

Flamhcltz (17) crganized human resource research into three qeneral cateqories: human resource value theory. measurement of human resource cost and value, and applicaticns of human resource accounting in organizations. In relation to the theory, $h \in$ said it is proceeding from two different directions. One as an outgrowth of studies on orqanizaticn and leadership at the University of Michigan's Institute fcr Social Research (39) (40) (41). This is an attempt to develop a model of the determinants of a group's value to an orqanization. The other approach by flamholtz (19) is an attempr to develop a model of rhe determinants of an individual:s value.

The Michigan ettort, under the leadership of Likert (32) has been directed toward a discovery of the organizational structure and the principles and methods of leadership and management which 工esult in oftimal organizational performance. He has tormulat $\equiv d$ a model of the variables wich determine the effectiveness of a human organization and has suggested that the model retlects the human resource value. Likert suggests it is probable that after sufticient Iesearch has been done and sutficient data and experience obtained, it will be teasible to do human asset accounting similar to the way that standard costs are now used to estimate the costs of new products and that MTM (Methods-Time-Measurement) is used to set a standard time tor the periormance of a task.

Pyle (6) (39) (40) (41), as Director of the \#uman Resource Accounting Program at the Jniversity of Michigan. has determined the costs of the human resources such as recruiting, hiring, training, experience and development and has applied hls approach at the E. G. BarIy Corporation. Human resource costs are identitied and separated from other costs of the tirm, then divided into categories such as recruzting, hiring, training and development. These costs are allocated among the managers according to the people supervised and rules have been set up for depreciating these assets ouer their expected useful life. With pyle's assistance, the R. G. Barry Corporation 1969 annual report
(39) contained industry's tirst published financial statements to include haman resource data. Soth the balance sheet and income statement carried two column of figures, one conventional and one that reflected the haman resource investment.

Flamholtz (15) (16) (17) (18) (19) (20) has attempted to develop and assess the valldity of a model of an individual's value to an organization. He selected the individual since measures of individual value can, in principle, be aggregated in crúdi io value larger units of people, where the reverse may not be fossible. He proposed a systell where estimates are made of the time period during which a person is expected to render service to an organization, the service states which the person may occupy, the value derived by the organization if the individual occupies these states for a specified period of time and the probablify that a person will occupy each state at specitıed future times. Stated more formally,

$$
E(S)=S 1 P(S 1)+S 2 P(S 2)+S 3 P(S 3) \ldots . . . S n P(S n)
$$

$$
=\sum_{i=1}^{n} \operatorname{SiP}\left(S_{1}\right)
$$

where $E(S)$ is the expected service, $S i$ represents the quantity of services expected to be derived 10 each state and P\{Si) is the probability that they will be obtained. He
suggests that the systell is essentially a stochastic process with revards and defines a stochastic process as a natural syster that changes in time in accordance with the laus of probability, where the rewards are the earnings of the syster, and the state is the position currently occupied by the individual. According to Elamholtz, to measure an individual's value to an organization it is necessary to 1) estimate the time period during which the person is expected to render services to an organization since all values must be on a present worth basis; 2) identify the service states that the person may occupy: 3) measure the value expected to be derived trol an individual if he occupies the state for a specified time period; and 4) estimate the probability that a person yill occupy each state at specified future times. Since expected services are difficult to estimate, he suggests surrogate measures of indiyldual value such as acquisition cost, replacement cost, performance appraisals, salary compensation or Goümissions. Sadan and Auerbach (42). along with Jaggi and Lau (26), have built on this approach and proposed stochastic models for the eqaluation of human resources in an uncertain environment.

Hekimian and Jones (22) have suggested a system of competitive bidding for people within an organzation to establish their value. Managers bid for any employee they need uithin the company and the bid is included in the
winning bidder's investment center asset base. By placing a value on both the physical and human assets, it is possible to calculate a return on investment for each investment center. A successful low bid is the most desirable since the manaqer must carry the asset value in the investment base.

Lev and Schyartz (31) have proposed using discounted future compensation as a sur rogate measure of human resource value. A person's value is the present worth of his remaining earninqs from employment. The estimated human capital value of a person y years old is:

$$
V_{Y}=\sum_{t=Y}^{T} \frac{I(t)}{(1+r)}
$$

$$
\text { Where } \begin{aligned}
I(t) & =\text { annuai earnings up to retirement } \\
I & =\text { a discount rate } \\
T & =\text { retirement age }
\end{aligned}
$$

To determine the total value of a firm's labor force, they suqqest it be divided into groups such as skilled, unskilled, enqineers, salesmen, etc. Average earnings profiles, based on census data are compiled for each group and the sum of the present value of each group frovides the total human capital value. If census data is not typical of a particular firm, then earninqs profiles based on the firms own wage scale can be constructed.

Operationally, all of the proposed strategies to human resource value contain problems yet to be solved. Pyle's approach sufters firom a lack of detinition concerning the costs to be $2 n c l u d e d$ in the 2 rivestment. For example, what part of the Personnel Department costs should be allocated to hiring? Is it legitimate to count the time spent by other managers in training a new man? Pyle, hovever, has a working system at the R. G. Barry Corporation and historical costs such as hiring and training have traditionally been used in financial statements since they are readily verified.

Flagholtz' model ofters an overall approach to individual valuation, but his need to measure the value derived by an organlzation if an individual occupies a particular state for a specitied period of time is difficult to fulfill since the determinants of value at this time have
 bidding is interesing, but probably not one that most managers would take seriously, since it has the flavor of game-playing. Lev and Schwartz' proposal of discounting future earnings is based on salary as a surrogate measure of value, whereas other measures might be more valid. The Likert model has had no test for validuty as a set of determinants of the value of the human organ ration (17).

In principle, the value of people to an organization is the present worth of the future services they are expected to render (17) (34). Currently, the development of human resource value theory is proceeding from at least two different directions (17), but expected service life is a commcn prcblem. Flamholtz stated (17). "To measure a resource value, it is necessary to forecast its expected service life (the valuation period) and estimate its expected future services. For a monetary valuation, expected future services must be translated into menetary terms and discounted to their present vaiue."

The emphasis of this research then, was on the resource valuation pericd and expected service life. Specifically, the obiectives were:

1. investigate the applicability of industrial property life analysis techniques to the estimation of human resource service life.
2. Determine the extent that the Iowa survivor curves will adequately describe the service life characteristics of human resources.
3. Letermine the nature of the survivor curves obtained from actual human resource retirement data.

4. Develop valuation models based on Engineering Valuation and Industrial Enqineering concepts.

LIFE ANAIYSIS

Insurance companies have lorg used the statistical method of studying human deaths to determine life expectancy and insurance premium rates (34). Survivor curves of humar beings have been used for determining insurance rates for scme 200 years, but only since 1902 have such curves been developed for physical property (34).

The $上 a s i c$ idea of life analysis is to determine from historical records the aispersion of lives actually experienced in the past by the subject population, be it humans or physical property. The fundamental representation of this dispersion is a retirement frequency curve (Figure 1) which relates the number or percentage of retirements from scme oriqinal piacement to the property's age.

Observed retirement frequency curve data usually is very erratic and hard to analyze, so a cumulative form, the survivor curve (Figure 1), is more commonly utilized. The survivor curve indicates the percentage of an original placement of property that remains in service at ages zero to maximum life. The retirement Erequency and survivor curves are related mathematically as follows:

Fiqure 1. Survivor Curve (34)

Let y_{i} represent the decimal portion retired from an original placement in the $i^{\text {th }}$ age intervale Then

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i}=1.0 \tag{1}
\end{equation*}
$$

where n is the age interval in which the last survivor of the placement is retired. The cumulative retirement fraction, $R x$, from an oriqinal placement over the time span from age zero to the end of the $x^{t h}$ age interval would be

$$
R x= \begin{cases}\sum_{i=1}^{x} y_{i} & x=1,2,3, \ldots, n \tag{2}\\ 0.0 & \text { if } x=0 \\ 1.0 & \text { if } x=n\end{cases}
$$

Correspondinqig, tine portion of an original placement remaining in service at the end of the $x^{\text {th }}$ age interval would be

$$
S x= \begin{cases}1-\mathrm{Bx} & \begin{array}{l}
x=1,2,3, \ldots, n \\
1.0
\end{array} \tag{3}\\
0.0 & \text { if } x=0 \\
\text { if } x=n\end{cases}
$$

which is the discrete version of the survivor curve. Retirement dispersion can also be represented in terms of a series of retirement ratios for successive age intervals. A retirement ratic for an age interval is the amount of property retired during the age interval divided by the amount cf property surviving at the beginning of the age
interval. or

$$
\begin{equation*}
I_{i}=\frac{Y_{i}}{S_{i-1}} \tag{4}
\end{equation*}
$$

and a survivor ratio for an aqe interval is defined as

$$
\begin{equation*}
s_{i}=1-I_{i} \tag{5}
\end{equation*}
$$

The retirement ratios and survivor ratios are related to the survivor curve expression as

$$
\begin{equation*}
S x=S c \prod_{i=1}^{x}\left(1-r_{i}\right)=s o \prod_{i=1}^{x} s_{i} \tag{6}
\end{equation*}
$$

These relationships may also be shown in terms of continuous functions.

The primary use of the observed life dispersion patrern in any form is to measure life realized or to provide a basis for predicting remaining life. In valuation situations, remaininq life is of interest since worth of remaining service is the objecti"e. If the observed frequency curve is complete, that is, if it indicates the age at which every one of the oriqinal units was retired, a weighted average or mean life can be found. This life is known as the average service life in industrial property valuation situations. If this same dispersion pattern can ke assumed to be a good prediction of how the retirements will occur in the future from a new frcperty qroup at age zero, the mean life
calculation is teraed the probable average service life or the forecasted life of the average or typical property unit at age zero.
as mentioned above, the freguency curve form of dispersion data is hard to analyze so the survivor curve tormat is usually preterrad. A complete curye would relate the percentage of the original property surviving irom age zero to maximum age. The process of tinding the weighted average of lives realized or to be realized described with respect to the frequency curve is analogous to finding the complete area under the survivor curve from age zero to maximum lite and dividing this area by 100 percent, the percentage surviving at age zero. The area has the dimensions ot percent-years, and dividing by 100 percent, the percentage of the property rendering the service, gives the length of service of the average or typical item, that is, the probable average service life in years. Life expectancy at any age is that period of time from the present age to the age when the unit will probably be retired from service. an estimate of expectancy tor a typical unit at age x is determined by Inding the remaining area under the forecasted survivor curve to the right of that age and dividing the amount by the percent surviving at age x. Tine zãeable life of an item or group of items of the same age is, by definition, equal to the age of the property plus the expectancy estimated as of
that age.
The retirement frequency curve corresponds to a protability density function where the area under the curye must equal one. Integration of the curye over an interval is the probability of some original placement of property Ietiring during that aqe interval. Retirement ratios represent the conditional prcbabilities of retiring during an aqe interval, having survived to the beginning of the interval. A point on the retirement ratio curve represents the probability of retiring, having survived to that point in time.

Frequently, observed data which are to be utilized for making a life forecast are incomplete, that is, the age of the lasi retirement is not $y \in t$ known, and the trend of the data is scmetimes erratic. plots of these incomplete data are called stub curves. Calculations giving estimates of average or remaining life need complete data, however, and are simplified if the trend of the curve is regular. Thus, observed data are normally smoothed and extended to maximum ace pricr tc making life estimates.

A commonly used technique of smoothing and extending the survivor curve is to fit a polynomial to the series of cbserved retirement ratios by the method of least squares. A smoothed and complete survivcr curve can be derived by inserting the retirement ratios determined for each age
interval frcm the polynomial into equation (6). This amounts to starting with the amount installed and successively multiplying the amount surviving at the beginning of the age interval by cne minus the retirement ratio for the age interval to obtain the amount surviving at the end of that aqe interval.

The survivor or frequency curves can be plotted to a scale ir aqe as a percent of average service life, which qives a basis for classifying the curves by their basic mathematical shape. A study reported in 1935 by Robley Winfrey at Iowa State University (49) resulted in 18 type curves divided among three families, the left modal group of 6 curves, the symmetrical grcup of 7 curves, and the right modal group of 5 curves, the modes refering to the retirement frequency curves. Later on there were 4 more added corresponding to an exponential survivor curve, where the modal frequencies of the retirement frequency curve occur at cr near the oriqin. Equations for these frequency curves are available (49) and will be useful in the remainder of this research.

These type curves are commonly referred to as the Iowa curves and are useful for at least two purposes:

1. To smooth original survivor curves and extend stub curves.
2. As an aid in determining probable life and life

expectancy.

Tables of these curves may be found in (49) and (34).
Plant property records in the case of industrial property, or fersonnel records in this research, are the source of data for studying recirement experience. Separate accounts or records may be kept for each individual unit or two or more units may be combined into a group, called a vintage qroup. Lamp (28) describes a complete property record as one that would permit determination of at least the fclloying:

1. The amount of property installed each year (i.e.e the amount installed each year as a vintage group).
2. The age at retirement of the property already retired from each vintage group.
3. The total amount of property in eacin vintage group surviving at the beqinning of each year (plant balance of each vintage group at the beginning of each year).

Data that meet these requirements will be described as aged data in the ensuing discussion.

The type cf property data available affects and sometimes determines the choice of methods for data analysis. Life analysis statistical methods are commonly divided into two cateqories which are dependent upon the available data:
turnover and actuarial. Actuarial methods include the retirement rate, individual unit, original group, composite oriqinal group and multiple oriqinal group, all giving probable averaqe service life and the probable retirement dispersicn fattern. The actuarial methods generally require a complete property record as described above. The turnover methods require data on the property installed and retired each year and the property balance each year. The simulated plant balance method is the cnly turnover method utilized in this research and it yields an estimate of probable average service alcng with a probable retirement dispersion pattern.

In practice, retirement data usually results in an incomplete survivor curve, that is, one that stops at a percent surviving qreater than zero. This stub curve must be smoothed and extended to zero percent surviving before averaqe service life is computed. Extension of the curves can be accomplished by judgement, statistical curve fitting, or matching to standard curves (34). The judgement method invclves extending and smoothing the curve by eye along the most probable path. Statistical methods involve fitting equations to the data and include the Gompertz-Makeham, Weibull, and folynomial methcds (23). Matching to standard or type curves involves use of a previously established set of type curves which are known to be representative in shape to those likeiy to be encountered. Some of these are the Iowa,

Patterson, New York-h, and Gompertz-Makeham (14). The type curves are drawn on transparent paper and layed over the curve to be extended, which is drawn to the same scale. The stub curve is then extended to zero percent surviving along the path followed by the chosen type curve.

Henderson (23) found that the so-called graphical
methods which have only a finite set of curves fit data as well as, if not better than the mathematical methods which fit an infinite set of curves.

VALUATION OF HUMAN RESOURCES

Several Engineering Valuation and Industrial Engineering concepts are useful in the valuation of human resources.

Enqineering valuation

Marstcn, $\mathrm{Hinf}^{\mathrm{n}} \mathrm{rey}$ and Hempstead (34) stated that the fundamental basis of the value of any specific property is the present worth, to the present owner, of the probable future services expected from the property during its probable future productive service life. They outlined the several approaches to the determination of property value. These can be compared with scme cf the recent efforts at human resource valuation.

1. The criginal ccst of the properiy, adiusted for decreased usefulness and intangible elements. This represents the existing investment in the property and is similar Pyle's approach (39) in his work at the R. G. Earry Corporation, where the costs of recruiting, training and develofment have been determined and then depreciated over their expected useful life.
2. The replacement cost of the property, adjusted for decreased usefulness and intangible elemenis. Likert (32) has posed the question of the cost to start any existing orqanization from scratch with new, untrained people.
3. The earning value of the property. Past records of receipis and expenditures indicate probable future returns upon which to base the property value.
4. The service worth value of the property. The forecasting of future returns. Flamholtz (19) has proposed a model where the expected value of future services is estimat \in d.
5. The market value of the property. Hekimian and Jones (22) have suqqested a system of competitive bidding for people within an organization that would establish their value.

Engineering econo픞

Enqineering econowy has application when discounting future values to the present and in the consideration of a series that is changing by a constant amount or percent.
gresent worth Values that lie in the future are usually discounted when they are expressed as of the current time. A qiven sum of money in hand today is vorth more than the same sum to be received at some future date (34). Given an equal annual amount of money x for n years in the future at interest rate i, the present equivalent $p=x(p / a)_{n}^{i}$
(45). Given a future amount of money x, n years in the future, the present equivalent $p=x(p / f)_{n}^{i}$. Tables of valuesfor ($p / a)_{n}^{i},(p / f)_{n}^{i}$ and others are available (45). Any values established for human resources in the future should be discounted to the present time in this manner.

Gradients Salaries or future services are likely to increase or decrease in the future by either a constant amount. q. or a constant percent. r. Methods have been devised to find the present equivalent of a series behaving in this manner (45). The present worth of a gradient. g. is qiven by $p=q(p / q)_{n}^{i}$. The present worth of a constant percentaqe increase, r, may also be calculated. It can be shown that

$$
\begin{aligned}
& \text { when } r>i \\
& \qquad p=\frac{c}{(1+i)}\left[\frac{(1+y)^{n}-1}{w}\right] \\
& \text { Where } w=\frac{1+r}{1+i}-1
\end{aligned}
$$

$$
\text { and } c=\text { the end of period amount that is changing }
$$ by the constant percent r.

shen I < i

$$
\begin{aligned}
p= & c \\
& \vdots(1+r)\left[\begin{array}{c}
(1+u)^{n}-1 \\
w(1+w)^{n}
\end{array}\right] \\
\text { where } w= & \frac{1+i}{1+r}-1
\end{aligned}
$$

Markov chains

Flambcltz (19) provided a conceptualization of the individual valuation problem and called it a stochastic process with service rewards. He stated generally that

```
    E(S) = S1P(S1) + S2P(S2) + S3P(S3) .....
```

or
$E(S)=\sum_{i=1}^{n} \operatorname{SiP}(S i)$

Where $E(S)=$ expected service to be derived from an individual

Si = the quantity of services expected to be derived in each state or job
$P(S i)=$ the frobability that an individual will occupy this state in a future time period

Although this model has conceptual value, it lacks definition since the value, si, depends on the length of time in the job. To provide computational tractability, the
process can te defined as a Markov chain so that it will be possible to calculate the $P(S i)$ and $S i$ for fixed periods of time. A stochastic process is an indexed collection of random variables $X t$, where the index t runs through a given set T (24). A Markov chain is a stochastic process which has the Markovian property. This Markcvian property is equivalent to stating that the probability of any future event, given any past event and the present state $X_{t}=i$ is independent of the past event and depends only on the present state of the process (24). The conditional probabilities $P\left(X_{t+1}=j \quad 1 \quad X_{t}\right.$ $=$ i) are called transition probabilities and this notation is read as the probability of the random variable X being in state i at time $t+1$. qiven that it was in state i at time t. If. for each i and j.

$$
E\left(x_{t+1}=i \mid x_{t}=i\right)=P\left(X_{1}=i \mid x_{0}=i\right)
$$

for all $t=0.1 \ldots$.
then the transition probabilities are said to be stationary and are denoted by $p_{i j}$. This means that the transition probabilities do not change in time. The notation $p_{i j}^{(n)}$ is the conditional probability that the random variable X, starting in state i will be in state jafter exactly n steps or time units.

The $p_{i j}^{(n)}$ must satisfy the following properties, $p_{i j}^{(n)}>0$ Eor all i and i and $n=1,2, \ldots$

The transition probabilities are conveniently denoted in matrix form as

$$
p^{(n)}=\left[\begin{array}{ccc}
p_{00}^{(n)} & \cdots & p_{0 M}^{(n)} \\
\vdots & & \vdots \\
\vdots & & \vdots \\
p_{M O}^{(n)} & \cdots & p_{M M}^{(n)}
\end{array}\right] \text { for } n=1.2 \ldots
$$

A full definition of a finite state Markov chain then, is a stochastic process that has the following properties (24):

1. a finite number of states
2. the Markovian property
3. stationary transition probabilities
4. a set of initial probabilities. $P\left(X_{0}=i\right)$ for all i

The Chapman-Kolmogorov equations provide a method for computing any n-step transition matrix. It can be shown (24) that the matrix of n-step transition probabilities is obtained from the expression

$$
f^{(n)}=p \cdot P \ldots P=p^{n}=P P^{n-1}=p^{n-1} p
$$

So the $n-s t e p$ transition probability matrix can be found by computing the $n^{t h}$ power of the one-step transition matrix.

Given the initial one-step transition matrix P, it is possible to calculate any n-step transition matrix. This means the protability of being in any particular state 0 to M after any step. $n, ~ c a n ~ b e ~ r e a d i l y ~ c a l c u l a t e d . ~$

Since it could be pertinent to human resource value application, the steady state condition of Markov chains should be considered. If states i and j are ergodic and celong to one class, then it can be shown that the probability of finding the process in a certain state jafter a larqe number of transitions tends to the value Tij. independent of the initial probability distribution defined over the states. To show that all states belong to one class. that is communicate with each other, and are recurrent, that is

$$
\sum_{n=1}^{\infty} p_{i i}^{(n)} \text { diverqes }
$$

it is sufficient to show that there exists a value of n for which $p_{i j}^{(n)}>0$ for all i and je Erqodic states are recurrent states that meet the additional condition of having two consecutive numbers, s and $(s+1)$, such that the process can be in state i at times s and $(s+1)$. If these conditions are met, then in the notation of Hillier and Lieberman (24).
$\lim _{n \rightarrow \infty} p_{i j}^{(n)}=T_{j}$
where the Til's satisfy the following steady state equations:

1. $T_{j}>0$
2. $\Pi_{j}=\sum_{i=1}^{M} \Pi_{i} p_{i j} \quad$ for $i=1,2 \ldots M$
3. $\sum_{j=1}^{M} T_{j}=1$

Substituting vaiues for $p_{i j}$ into these equations and solving simultaneously provides solutions to the $\prod_{j}{ }^{\text {' }} \mathrm{s}$, the steady state probabilities.

If the random variables, X_{t}. represent different jobs in an orqanization, the transition probabilities, $P^{(n)}$, represent the conditional probabilities of going from job i to job j after n periods, assuming that the employee will still be employed during period $n+1$, and a value, S, is assigned to the quantity of services expected to be derived in each job over a year's time t. it would be possible to calculate the present vorth of expected service, $E(S)$, to be derived from an individual durinq his expected service life.

$$
E(S)=S_{\text {Start }}+\sum_{n=1}^{L} \sum_{i=1}^{M} S_{j} P_{i j}^{(n)} \quad \begin{aligned}
& \text { for all starting jobs, } i, \\
& M=\text { total number of jobs, } \\
& \\
& L=\text { life expectancy-1 }
\end{aligned}
$$

The transition matrix, P, must be established by an orqanization from an examination of past records, adjusted
for the future. Since stationary transition probabilities are assuned here, the p_{ij} 's must be arerages of the probabilities of job changes includiag enployees in all time stages of a particular job. Unfortunataly, the data for this research was 1 n a form that made it inconvenient to extract intormation on job changes.

The value tor n. job life expectancy of an employee, can be established by life analysis techniques to be outlined Later in this research. S_{j}, the quantity of service expected to be derived $1 n$ each state or job over a year's time, is the Forth of probable future services expected from that job. It is an estimate of the contribution of each job to the total quantity of services provided by the enterprise. Sadan and Auerbach (42), proposed another Markov solution to human Iesources valuation, where the expected contribution, Sj, was assumed to be salary since most decision-makers acquire production tactors whose costs do llot exceed their contributions. Each state contained an n-tuple signifying some signiticant classification information about the employee in the state such as age and salary. Jaggi and Lau (26) proposed a sinilar Markov solution except they included an additional roy and column $1 n$ the transition matrix for the probability of leaving the company and then continued the Iterations to steady state.
sost of the Markov solutzons discussed up to this point have used identical transiticn probabilities to govern successive transitions. However, it is obvious that for any individual or group of employees, the transition probabilities will be non-stationary (2b) since the probability of woring from one job to another is to some extent dependent upon the number of periods spent in the present job. An alternative and more realistic approach then would be to allow transition probabilities that can change from one time period to the next. Since the transition probabilıtıes can change at each transition, there is little meaning to the ldea of steady-state probabilities in most cases. The: n-step transition probabilities are found by multiplying cogether, in order, the transltion probability matrices tor each of the steps.

If the transition probabllities are denoted in matrix form as betore

$$
\underline{Q}^{(n)}=\left[\begin{array}{lll}
\mathbb{F}_{\infty}^{(n)} & \cdots & P_{O M}^{(n)} \\
\vdots & & \vdots \\
\vdots & & \vdots \\
\vdots \\
P_{M 0}^{(n)} & \cdots & p_{m M}^{(n)}
\end{array}\right] \text { for } n=1,2, \ldots
$$

except another column and row are added to denote the state representing exit of the employees from the firm, then a situation exists where life analysis would again be helpful.

Since it would be expected, for example, that $p_{\infty}^{(1)}>p_{\infty}^{(2)}$ but at some point $P_{00}^{(n)}<P_{o 0}^{(n+1)}$ the situation is analogous to the conditional prcbability of moving from job i to job j, after having survived in job i far n periods, until at some point the employee would exit from the firm and then poexit $=1$. At scme point in time depending on the company and job, the transition probability matriz would be expected to arrive at

$$
P^{(n)}=\left[\begin{array}{cccc}
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 1 \\
0 & 0 & \ldots & 1 \\
0 & . & & 1 \\
0 & 0 & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

The conditional probabilities are exactly the situation represented by the retirement ratio curfe (Figure 5) and the "tathtub" shape is also typical of physical property. The retirement ratio curves are the basis for establishing the non-stationary transition probabilities.

EXPERIMENTAL PROCEDURE

Retirement characteristics of the personnel data provided by three large organizations were determined in several ways.

GEneral

The applicability of industrial property life analysis techniques to the estimation of human resource service lives was tested ky gathering actual employee data from the personnel departments of three organizations. previously proven life analysis procedures were utilized in testing this
 dispersion pattern and an estimate of any discernible trends in the average service life. By actual use then, the applicability was shown.

The extent that the loy survivor curves adequately describe the service life characteristics of human resources was determined by a two step procedure. First the best-fitting Iowa curve was found by either plotting the experimental survivor data and overlaying the actual Iowa curves to provile a visual fit or using computer programs Actiput, and selec to fit the best polynomial to the retirement ratio curve, convert the polynomial expression to it's equivalent survivor curve, and find the best-fitting Iowa curve in a least squares sense. Second, the retirements
predicted by the best-fitting Iowa curve were statıstically tested against the actual returements to determine the goodness of fit.

The nature of the survivor curves obtained fron actual human resource retirement data, that is, any generalızation that can be made concerning the type of Iowa curve most applicable, was determined in the process of $=0 m p a r i n g$ the actual data with the Iowa curves. The negative exponential tunction was also investigated as a possible human resource survivor curve model. Average service lives for the employea groups included in the experimental data were a by-product of the comparison between the lowa and actual survivor curves.

The majority of this research concerned an analysis of employee retirement and separation data provided by three large organizations in the insurance, manufacturing and public utility business. The types of employees covered were marketing, blue collar, career college graduates, engineers, mature females and clerical. The data itself showed the length of tume employees stay with an organization. from the time they enter to the time of separation, whatever the reason; retirement, quit, tired, leave of absence, or laid off.

The retırement analysis was accomplished by three different methods, depending in part on the form of the data as it was supplied by the organization.

1. Retirement rate.
2. Oriqinal group.
3. Simulated plant balance.

In åaition, scme attempt was made at mathematical curve fitting, although this has been adequately researched elsewhere (23).

Retirement rate

If aqed data is available, this method of calculating survivor curves is much the kest since it is based on the collection and compilation of the data of all property in service during a period of recent years, both property retired and that still in service (34). It involves sampling retirement ratios, the number of people retired during the age interval divided by the number of people surviving at the beqinning of the age interval, from the various vintages that have proferty still surviving during the period of study. A better understanding of this and the original group method can be gained by looking at Table 1 which shows the form of the data that is input to se veral computer programs for analysis.

An exferience band shows the experience or retirements that have occurred during a tand of years or a single year. For instance, referring to Table 1, in 1968 there were 150 units in service at the beginning of the year, and 30 of
these retired during the year. The retirement ratio in this instance is $30 / 150=$. 20. Of the 30 retired units, 7 were 0 to .5 years cld, 6 were .5 tc 1.5 years old, 7 were 1.5 to 2.5. 4 were 2.5 to 3.5 , etc. The half years arise because the oriqinal data shous the number of people hired during a pariticular calendar year. The first period with the company for a group then, is assumed to be a half year since some were hired before, and some after, midyear. In terms of people, the experience band will show the retirement experience of an organization during a particular year or band of years. Hcw does the retirement experience of 1972 compare with 1962? What is the trend of retirements since $15 \in 2$ that may help predict into the future? These are some of the $q u \in s t i o n s$ that $c a n$ be answered with a retirement rate analysis.

Several existing computer programs (13) were utilized in the aralysis of retirement rate data and are described kriffly here. Actiput inputs aged data to computer storage in a form that can be interpreted by the remaining two programs. Output from this program is shown in Table 1. Another program called Tren for Trended Average Service Life performs rolling band and shrinking band analysis over a specified number of years. The analysis is conducted by fitting retirement ratios with folyncmials from the first to third degree. A sample of this output is shoun in Table 2. The last program is called

Selec for Averaqe Service Life and Dispersion Selection froqram. The program conducts a series of up to five actuarial analysis by fitting a curve of retirement ratios with polynomials and then comparing the smoothed suryivor curve resulting from this polynomial to the Iowa curves to determine the best fit in a least squares sense. The output consists of the Iowa dispersion best-fitting the data and averaqe service life based on the smoothed curve as shown in Table 3.

Retirement rate analysis followed this procedure:

1. Draw stut survivor curves for experience bands 1970-72. 67-69. E4-66 etc. in the same three year bands for all of the data so the retirement characteristics can be compared between tin $\mathfrak{d i f f e r e n t ~ o r g a n i z a t i o n s . ~}$
2. Use computer programs Actiput, Tren, and Selec to fit the best fclynomial to the retirement ratio curve, find the Iowa curve of best fit, determine the average service life and analyze the trend of average service lives. In those cases where the Iowa curves, as determined by the Selec proqram, did not fit the data, the curves were matched by eye to the Iowa curves and the horizontal scale expanded when necessary. If the Iowa curves still did not fit, then the stub survivor curye was smoothed and extended using judgement, keeping in mind that a manimulu

Table 1. Historical arrangement of retirement data

Table 1. (continued)

Table 2. Output from teen program

Table 3. Output from SELEC program

AVERAG

OFFICE:

2VE. L!FE 2.6
$\stackrel{5}{\circ}$

IMTEFVAL EXFESURES EETIEEMEJTS

0.0	139.	17.	30.
C. 5	116.	33.	31.
1.5	74.	7.	11.
2.5	59.	7.	5.
3.5	34.	5.	3.
4.5	11.	J.	1.
5.5	0.	2.	0.
6.5	0.	0.	0.
7.5	0.	2.	0.
2. 5	0.	-	0.
9.3	0.	3.	0.
TOTAL		32.	52.

10.5
148.64
-0.17
length of service from age 18 to 55 is 47 years. Then the area under the curve was determined graphically in order to calculate average service life. The 47 year restriction was also a factor in selecting the best Iowa curve with the Selec program. A description of this graphical curve fitting procedure is available (34).
3. Provide a visual comparison between the smoothed Folynomial-fitted curve, the best-fitting Iowa curve, and the stub survivor curve.
4. Statistically test the retirements predicted by the best-fittinq Iowa curve with the actual retirements to determine the goodness of fit.

Original grcues

An original group or vintage group is that group of peofle hired during the same year, or in the case of a multiple oriqinal qroup, during several years, but considered as a sinqle, common group. This type of analysis is of interest if it is desired to compare the group of people hired in 1950 with those hired during 1974 in terms of service iife. Is the average service life of employees hired today much shorter or longer than it was ten years ago? Is the trend of recently inired college graduates toward longer
or shorter service lives with the organization? Original group analysis will answer these questions.

Tke oriqinal group life study was done graphically, and the procedure follows:

Abstract

1. Draw stub survivor curves for three year original qroups and selected individual years.

2. Smooth and extend the stub survivor curves graphically. The Iowa type curves are available on transparent paper uith the average service life predetermined. The type curves were layed over the stub and the stub was extended to zero percent suryiving along the path followed by the Lest-fitting Iowa curve. When the Iowa curves did not fit the data, they were smoothed and extended by judgement qraphically, and the average service life determined in a manner identical to that followed in the immediately precedinq section on retirement rate procedure. This method of determining average service life is explained in the secticn on curve fitting and in reference (34).
3. Statistically test the retirements predicted by the best-fitting Iowa carve with the actual retirements to determine the goodness of fit.

Simulated plant balance method
This is a technique that provides an estimate of the retirement distribution and average service life of properyy units or people where the records kept do not provide the age at which the property units were retired from service. The simulated plant balance method is a way to estimate survivor characteristics using a methcd of successive approximations. Each approximaticn requires that an estimate of the survivor characteristic described by the combination of a type curve and averaqe life be tested using the annual additions and year-end balances (14). The data required are several year-end bcck balances and the gross additions from which these bock talances resulted. A brief description from Methods of Estimating Service Life and Depreciation (14) is included here.

The calculated year-end balance is the sum of the simulated survivors from each vintage of additions. The survivors are calculated for each vintage by multiplying the additicn in each year by the percent surviving corresponding to the age of each addition as of the date of the year-end balance tc which the calculated balance is compared. Several year-en a balances should be simulated in crder tc obtain an adequate sample from which to determine the best fitting survivor curve for the group. The survivor curve which produces the least sum of squared differences between actual balances and simuiated balances is considered that survivor curve of those tested uhich best fits the stub survivcr curve inherent in the group stuaied.

The importance of this method is considerable since it can be expected that many or ganizations, especially smaller ones, will not have the type of detailed, aged, personnel data necessary for the retirement rate or original group analysis.
of considerable interest was how close the standard Iowa curyes came to describing the experimental data obtained from the retirements of employees in the several organizations that provided data. Use of an Iowa curve to describe retirement experience vill save a great deal of time because of tables already available for each curve, showing percent survivinq and probable life at each age along with the mathematical equation for the retirement frequency curve.

A computer program (Selec) was used to find the best-fitting Iowa curve to any experimental retirement rate data ky the least-squares method. This program fits the best fclynomial to the retirement ratio curve since a polynomial is more likely to fit a retirement ratic curve than a survivor curve. The survivor curve resulting from the retirement ratio curve is ther compared with the standard Iow curves to find the best fit in a least squares sense. Original grcup data was fit graphicaly to the Iowa curves.

This pre-selected Io』a curve then is of interest because it is the best of the Iowa curves, but how good? Io determine the qoodness of fit of the Iowa curve selected, a statistical test was designed to compare the retirements predicted from the selected curve with the actual observed retirements. Twc sliqhtly different procedures were followed depending on the
method of analysis, original group or retirement rate, even though they both involve the chi-square test.

Original group

The chi-square test statistic

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(f_{i}-n p_{i}\right)^{2}}{n p_{i}} \quad \text { degrees of freedom }(d f)=k-1
$$

was used where

$$
\begin{aligned}
& f_{i}=f r e q u e n c y \text { of retirements during an age interval } \\
& n=\text { the number of people in the original group } \\
& p_{i}=\begin{array}{l}
\text { expected percentage of retirements during the same } \\
\\
\text { age interval, taken from an Iowa curve }
\end{array}
\end{aligned}
$$

This test was appropriate since it is a goodness of fit test based on the discrepancy between observed frequencies of values and expected or theoretical frequencies and is applicable to either a completely or partially specified distribution. The observed frequencies came from the actual retirements while the theoretical frequencies were the result of multiplying n, the number of people in the original group, by p_{i}, the expected percentage of retirements predicted by an Iowa curve.

Tre $\dot{\text { a }}$ ta was qrouped so that each expected frequency of retirements, $n p_{i}$, was >5. The calculated X^{2} was then compared with the tabled values at the 10 percent and 1 percent levels to determine whether the Iowa curve described the retirement experience cf the group tested.

```
REtirem@Mt ratte
    Since tin experience of a sinqle population is not
follow\ind, but retirements frcm each vintage that has property
still surviving during the period of study are sampled, the
data available Ecr test was viewed as coming from k different
Fopulations. persons in the kth population were those who
IEmained with the company at least k-1 years. Then the
probability tha= the person retired within the next year was
denoted pk. The hypothesis tested then was
    H: PO}=\mp@subsup{P}{0}{\prime
        p
        \bullet
        p}\mp@subsup{K}{}{\prime}=\mp@subsup{P}{K}{\prime
```

Where $E_{0}=$ Erobability (retiriag during year 0)
P_{0}. $=$ Probability(retiring this year
taken from an Iowa curve)

If H is true then

$$
w=\sum_{j=0}^{k} \frac{\left(n_{j}-n_{j} p_{j}{ }^{\prime}\right)^{2}}{n_{j} p_{j} \cdot\left(1-p_{j}{ }^{\prime}\right)}
$$

is distributed approximately as X^{2} with def. equal to the number of age groups.

```
nj = number of people at year 0 that the jth retirements
    came from
Ij = retirements during year i
```

To show this, it is assumed that the personnel in the different populations are independent, thus the number of retirements. I_{k}, during the kith year are independent random variables, each with a binomial (n_{k}, P_{k}) distribution. Letting x be a binomially distributed variable then

because if $x \sim$ Binomial (n, p).

$$
\begin{aligned}
& \mu_{x}=n p \cdot \quad \sigma_{x}^{2}=n p(1-p), \\
& \text { then } x \sim \operatorname{Normal}\left(\omega_{x} \cdot \sigma_{x}^{2}\right)
\end{aligned}
$$

$$
\therefore \frac{x-\mu_{x}}{\sigma_{x}} \sim \text { Normal }(0,1)
$$

The test statistic. W. is the result of summing over the populations since they are assumed to be independent. The test statistic. W, was utilized in a manner identical to the oriqinal qroup approach.

Application

Application of this sta tistical theory dictated the need for three additional computer proqrams to expedite the analysis.

Integration of retirement frequency curve Calculation of the cini-square statistic required a knowledge of the theoretical probability of retiring corresponding to scme best-fitting Iowa curve. These probabilities are shown as p_{i} and p_{j} ' in the previous discussion. The most efficient manner of findinq these was $k y$ integration of the retirement frequency curves that have been derived and are nov the basis of the Iowa survivor curves. These equations are available (49) and since the oriqin-modal types occurred most frequently in this research, are shown in figure 2 along with the survivor curves. The equation for the Iowa. typo 04 , retirement frequency curve, for example, is

Fiqure 2. Survivor, probable life and frequency curves for the oriqin-modal type (49)

$$
y=11\left[1+(0.1 x+1.6)^{6}\right]^{-0.6}+.59863384
$$

where x is the aqe in units of 10 percent of average life measured for all values of x from -10 to +34.0 and Y is the frequency in percent for 10 percent intervals.

The ccmputer program utilizes an I.B.M. program called QATR found in the Scientific Subroutine Package. It performs inteqration of a qiven function by the trapezoidal rule after keing qiven the upper and lower bounds of the interval to be inteqrated, the maximum number of bisections of the interval. the function to be integrated and the upper bound of acceptable error. Repeated trials of this routine showed it to be accurate to within one-half percent qhen integrating several intervals over the range of the function and comparing tc 100 percent. Since the x values in the retirement frequency curve are in units of 10 percent of averaqe life measured from the average life ordinate, an age of 0 qives an x value, assuming an 04 curve with 9.7 A.S.I.. cf

$$
-\frac{9.7}{.97}=-10.000
$$

At aqe 1.

$$
x=\frac{9.7-1}{.97}=-8.969
$$

The proqram listing and example of the output are in Appendix

A (Fiqure 11).

Original group chi=sguare test program The probabilities determined from the integration program were input to this proqram to calculate the expected number of retirements from the oriqinal qroup during successive age intervals. A sample of the output and program listing are shown in Appendix a (Fiqure 10).

Retirement rate chinsquare test prograg This program is essentially identical to the original group chi-square proqram except for the summation statement, Appendix a (Fiqure 9). Since the retirement probabilities from the retirement frequency curves apply to original groups, it was necessary to be able to go back to the oriqinal groups that contributed the retirements during each aqe interval of the experience band. These oriqinal groups, n_{j}, are part of the input to the program, along with actual retirements, r_{j}, and the probabilities of retiring. p_{j}, that were output from the inteqration proqram.

EXEERIMENTAL DATA RESULTS

Summarized here are the experimental results of the retirement rate, oriqinai qrcup, and simulated plant balances methods of life analysis along with the statistical ccmparison of actual retirements against retirements as predicted by the Iowa curves.

Retirement rate

A summary of the various retirement rate analysis by orqanizaticn, showing the best-fitting Iowa dispersion and average service life is shown in Table 4.

Historical arrangement cf the Manufacturing Marketing data, the basis for the varicus analysis, is shown in Appendix C (Table 9). Appendix B provides a visual comparison between the best-fitting Iowa curve, the actual stub curve and the fclyncmial-smoothed curve. On the basis of inspection cnly, the match was quite gocd. The dispersions for these Marketing employees (Table 4) were either 03 or 04 and the average service lives went from 9.0 to 14.9 years. A trend analysis of averaqe service life in three year bands from 1941 to 1973. Appendix C (Table 10) showed no noticeable difference tetween service lives along this 32 year span.

Historical arrangement of the Office Career College Graduate data is shoun in Takle 1 of the previous section. Appendix B frcvides a visual comparison of the actual data,
best-fitting lowa curve, and smoothed polynomial-fitted curve. The summary shows that for this group of employees the dispersions were 01,03 or 04 and the average service lives ranged from 3.6 to 9.8 years. A trend analysis of average service lives in three year tands from 1961-71 showed no trends tcward increasiag or decreasing lives over this time span.

Historical arrangement of the Utility Meter Readers is shown in Apfendix C (Table 12). The oriqinal data from the Utility was scmewhat unusual in that there was a record of those hired and separated between 1969 and 1973, while the record extended back to the year 1919 on those employees still employed as of 1969 to 1973. This gave an extended picture of the surviving employees by age, although a poor oriqinal qrcup analysis since there was no record of the dat \in s $\in \mathbb{m}$ loyees separated until 1969. Appendix B. Figures 49, 50. 51. shows the different survivor curve comparisons for the Meter Readers. Use of the Selec program for this group of employees indicated that the Iowa dispersions were all 04 and averaqe service lives were 13.0. 14.7 and 16.6. It was obvious that these service lives gere nct accurate. The percent surviving dropped off so rapidy that a polynomial was unable to accurately fit the retirement ratios.

Table 4. Summary of retirement rate analysis

Experience Band	Manufact. Market.		Office Career College		Utility Meter R.		Otility Laborers	
	Iowa	ASL	Iowa	ASL	Iowa	ASL	Iowa	ASL
1955-57	c3	14.9						
1961-63	03	14.3	01	9.8				
1964-66	04	9.0	03	3.6				
1967-69	04	12.8	04	9. 4				
1970-72	04	10.6			04	7.71	04	. 91
1970-71			04	5.8				
1969-71					04	7.02	04	. 4^{1}
1971-73					04	10.01	04	1.91

Experience Utility Utility Utility Utility
Band Mechanics Ironworkers Coal-Ash All-Union

Iowa ASL Ioya ASL Iowa ASL Iowa ASL

$1970-72$	04	5.11	04	.51	04	7.4	04
3.51							
$1969-71$	04	6.11	20	.8	04	2.11	04
$1971-73$	$C 1$	9.91	04	1.01	04	9.3	04
1.91							

1Average service life determined graphically.

Since the proqram was written to match an Iowa curve to the survivor curve resulting from the retirement ratio Folynomial, the best-テittting Iowa curve was also not
accurate. Expanding the horizontal scale and plotting by eye to the stanoard Iowa curves was unsuccessful. Graphically determining the actual areas showed that the average service lives were 7.0 Eor 1969-71, 7.7 for 1970-72, and 10.0 Eor 1571-73.

Laborers, Hechanics, Ircnworkers, Coal and Ash fiandlers, and All Union Employees from the utility were analyzed in the same fashicn as the other employee qroups and the resulting historical arranqement, survivor curves and trend analysis is shown in Affendix B and C. In all cases where the fclynomial-fitted curve was not accurate, average service life was determined graphically. Laborers and Ironworkers had averaqe service lives on the order of one year or less. In mosr cases, over 90 percent of them left the same year they were hired. Since the trend analysis was based on a Folynomial fit tc the retirement ratios, and since this fit was not good, the trend analysis of this data was also not accurate. However, Table 4 indicates a lengthening of average service lives in recent years.

Original groups

Table 5 is a sumary of the various original group analysis by job, showing the best fitting Iowa dispersions and $a v \in r a g e$ service lives. The data for the original group survivor curves can be dupiicated by referring to appendix C which contains tine nistoricai arrangement of retirement data.

For example, the Utility Meter Readers, Appendix C (Table 12), began with a group of 25 hired in 1969, of which 16 retired that same year. Following down the page at an angle to the right, this left 9, of which 5 retired, leaving 4 and so on.

Manufacturing Marketing personnel had average service lives ranqing frcm 10 to 18 years and all of them shoved a close conformance to the Iowa 04 type survivor curve. There was a definite trend to shorter service lives in more recent years as might be expected. The 1958-60 group had an 18 year A.S.L., 1961-63 a 14 year A.S.L., 1964-66 and 1967-69 a 10 Year A.S.L.

The Office Career College Graduates exhibited the same tehavior, beqinning with a 10 year A.S.L. from 1961-63, 8 year A.S.L. £or the original groups 1964-66 and 1967-69. They followed the Iowa o4 dispersion closely.

Since the placements of Utility personnel were over the short period of time 1969-73, there vas not sufficient experience tc obtain anywhere near complete survivor curves. However, using the data ayailable, for Meter Readers the two oriqinal qroups 1969-71 and 1970-72 showed an A.S.L. of 3 years after the stub curves were extended using an Iowa 04 dispersion.

Table 5. Summary of original group analysis

$\begin{gathered} \text { Oriqinal } \\ \text { Grouf } \end{gathered}$	Manufact. Market.		office Career College		Utility Meter R.		Utility Laborers	
	Icwa	ASL	Iowa	ASL	Iowa	ASL	Iowa	ASL
1958-60	04	18						
1961-63	04	14	04	10				
1964-66	04	10	04	8				
1967-69	04	10	04	8				
1969-71					04	3	04	. 5
1970-72					04	3	04	. 5

Cver half of these Meter Readers left the same year they were hired. in a like manner, the Utility Laborers, Mechanics, Ironvorkers, Coal and Ash Handlers, and all Union Employees were plotted and fit to Iowa curves. The all Union Emflcyee oriqinal groups differed from the Iowa curves to the extent that the actual data was extended by eye and the $a v \in r a q \in$ service life found graphically.

Simulated plant balances

Scme of the data was not aged, making it impossible to trace oriqinal qroups or calculate retirement ratios. In some cases, only the number hired or terminated and the balance of personnel by year was availabie. This was true of the employee groups called office Mature Females over Age 30, All Home Office Emplcyees, and Manufacturing Hourly. Determinaticn cf averaqe service life and Iowa dispersion was accomplished by the Simulated Plant Balances method explained previously.

Additions, retirements and balances for Mature Females, Over Age 30 during the years 1957 to 1972 are shown in Appendix C (Table 24). Results of the analysis, Appendix C (Table 25), show that the best-fitting Iowa dispersion was an 04. With an average service life of 8.4 years. This best-fitting dispersion vas determined by the minimum sum-of-squared difference between actual and simulated balances. The Index of Variation is another measure of aqreement between actual and simulated balances and was calculated as follows:

$$
\text { Index of variation }=1000 \sqrt{\begin{array}{c}
\text { Sum oí Squared Differences } \\
\text { Aumber of } \\
\text { Nest Years }
\end{array}}
$$

The lower the value of the index, the better the agreement with the actucl data since the actual and simulated balances should be as close as possible. The fetirement Experience Index is the portion of the oldest addition which would have befn retired as cf the date of the study had the property experienced the indicated dispersion and average service life. A value at or near 100 percent suggests at least a ccmplete life cycle of the experience considered in the analysis.

Additions, retirements and balances for All Home Office Emplcyees, Clerical and Other, Including Part-Time, 1948-72 are shown in Appendix C (Table 28). Results of the analysis showed that the best-fitting Iowa dispersion was an 04, with a 2.9 year average service life. an analysis using some of the same data for the years 1961-72 but excluding part time employees gave an R 1 Iowa dispersion and a 3.2 year average service life. Removing the part time employees raised the averaqe service life by . 3 years. The overall short service life was due to the high turnover of young females in the clerical staff. A comparison of All Home office Employees with Mature females Over aqe 30 showed that the average service life of Mature females was more than twice that of the entire cffice.

Additicns, Ietirements and balances for Manufacturing Hourly emplcyefs are shown in Appendix C (Table 30). Results of tine znalysis showed that the best-fitting Iowa dispersion was an 2 2, with a 4.7 year average service life. a summary of all Simulated plant Balances analysis is shown in Table 6.

Table 6. Simulated plant balances summary

	Iowa Dispersion	$\begin{aligned} & \text { Average } \\ & \text { Life(years) } \end{aligned}$	Index of variation
Office			
Mature Females	04	8.4	91
Home Office Employees			
Clerical and Other	04	2.9	55
Including Eart Time			
Home Cffice Employees			
Excluding Part Time			
Manufacturing			
Hourly	L. 2	4.7	154

Chi-scuarge test results

The criqinal or multiple original groups were chosen so they included sufficient years such that there vere seldom
less than 5 retirements durinq any one year. Also, the groups had to begin far enough back from the termination of the data to provide several years of experience. Where the retirement experience ended, the last aqe interval was broad enough to include and assume retirement of the remainder of the oriqinal group.

One year bands of data were picked for the retirement rate chi-square tests to satisfy the requirement of independence. Since it was necessary to know the number in tte oriqinal group that the retirements in a particular year came from, the number of years included in the cest was very limited for the utility data. The original groups for these employees were known only from 1969 to 1973.

Results of tio tests. Table 7, were generally favorable for all but the Utility employees when tested at the 10 percent and 1 percent levels. The values for $X_{.90}^{2}$ and $X^{2} .99$ came from tables of percentiles of the chi-square distribution (33). These are the values at which there is a 10 fercent and 1 percent probability of rejecting the hypothesis when it is true. This indicates that the Iowa curves described the retirement experience of the Manufacturing Marketing and Cfíice Career College people weli. In other words, the actual retirements came from a population descrided by an Iowa curve.

Table 7. Chi-square test resulis


```
Getirement
```

Rate
$196630.63 \quad 30.8 \quad 40.3$
$1968 \quad 17.88 \quad 33.2 \quad 43.0$
$1970 \quad 34.34 \quad 35.6 \quad 45.6$
197239.5137 .948 .3

1966
1968
1970

$$
\begin{array}{rrr}
4.80 & 10.6 & 16.8 \\
8.09 & 13.4 & 20.1 \\
52.85 & 16.0 & 23.2
\end{array}
$$

1971
1973

$$
\begin{array}{lll}
6222.22 & 6.2 & 11.3 \\
2402.34 & 9.2 & 15.1
\end{array}
$$

The chi-square t三sts on the Utility Union employees were a formality only, since it as obvious from the survivor curves that the Iowa dispezsions did not fit this data. In almost every case, over 80 percent of the employees left the first year, but the remainder stay $\in d$ on for an extended period. scme up to 46 years. There are no Iowa curves that presently fit this unusual retirement fattern. A more detailed report of actual and expected retirements, probabilities of retirement, number in original group and degrees of freedom is provided in Appendix C.

CuIve fitting

The thrust cf this Eesearch was the investigation of averaqe service lives using previously accepted and proven techniques. Specifically, fitting polynomials to the retirement ratio curves, and when this failed, graphically finding the area under the survivor curve in order to calculate averaqe service life. Other techniques have been investiqated adequately by $H \in n d e r s o n ~(23)$ and others witin varying deqrees of success. However, at least two obvious questions are raised when looking at the sharp slope of these curves during the early years and the fact that they all kegan at 100 percent. First, why not use a negative exponential function to describe the survivor surve, since it can be made to beqin conveniently at 100 percent and the shape appears exponential? Second, why not fit a polynomial
directly tc τ he survivor curve rather than convert to a survivor curve \exists fter fitting to retirement ratios?

Several neqative exponential functions were fit to a typical survivor curve in this research; the office Career Cclleqe Graduates, 1970-71 experience band. These curves are shown in Figure 3. The fit was not good, and in fact, a visual ccmparison between Figure 3 and Figure 23 was sufficient to show that at least in this instance, the best method was fitting a polynomial to the retirement ratio curve. Because of the general conformance to a survivor curve, houever, the neqative exponential could be useful in scme cases for estimation purposes.

Another representative employee group, office Career Colleqe Graduates, 1961-71 original group, was used to ccmpare fitting a polynomial directly to the survivor curve or to tie retirement ratio curve. To accomplish this, the actual survivor curve data was plotted. Figure 4, extended to 47 years, and the smoothed data used to calculate retirement ratios, Table ε. The resulting retirement ratio curve, Figure 5. and the survivor curye were fitted with polynomials using the proqram shoun in Appendix a (Figure 12). This program fit the best polynomial in a least squares sense, and gave the X and Y values, alonq with the degree of polynomial requested. The best-fitting survivor curve polynomial yas a third deqree.

$$
y=.83691-.07472 x+.00275 x^{2}-.00003 x^{3}
$$

The best-fittinq retirement ratio curve was a second degree Fclynomial.

$$
y=.24514-.02877 x+.00071 x^{2}
$$

Two additional CPS programs were written to assist in plotting the survivor curves from these points and are shown in Appendix A (Figures 13,14). One computed percent surviving for aqes 0 to N in one year increments, given a poiynomial expression for a 工etirement ratio curve. Negative retirement ratios were assumed to be zero. The other computed percent surviving for aqes 0 to N in one year increments, given any Fclyncmial expression.

Fiqure 5 shows the actual and smoothed retizement ratio curves. This "bathtub" shape is typical of that encountered in the failure of some physical property, notably electronics components. The second degree polynomial fit best. Figure 4 shows a ccmparison of the actual survivor curve, polynomial fit directly tc survivor curve and polynomial fit to a retirement ratio curve. In this one example, there appeared to be little difference betueen the two methods of survivor
curve fitting, except that the retirement ratio method can be made to regin at 100 percent.

Fiquie 4 and table 8 also show the technique used to calculate qraphically the area under a survivor curve, protable life and life expectancy. This method was followed in all cases where the Iowa curve fit was not satisfactory. Table 8 is a life table showing the percent surviving. Ietirement ratios, expectancy, probable life and provides a method of finding the area under the survivor curve and averaqe service life by dividing the survivor curve into small rectanqles. Column $6 i s$ obtained by summing column 5 , the interval area from the bottom upward to produce remaining areas. The area remaining at any service age divided by the Fercent surviving at that age results in the average expectancy of the surviving froperty, column 7. The probable life, column 8, of the survivors at each age is equal to their aqe plus their expectancy.

Table 8. Office Career College Graduates, 1961-71 original grcup

11	21	31	41	51	62	71	82
0-1	100.0	. 1631	91.84	Same	1145.53	11.45	11.45
1-2	83.6	. 2317	73.99	as	1053.69	12.59	13.59
2-3	64.3	. 1347	59.97	col.	979.70	15.23	17.23
3-4	55.6	. 1271	52.10	4	919.73	16.53	19.53
4-5	48.5	. 1093	45.92		867.63	17.86	21.86
5-6	43.2	. 0673	41.80		821.71	18.99	23.99
6-7	40.3	. 0475	38.58		779.91	19.32	25.32
7-8	36.8	. 0877	35.20		741.33	20.13	27.13
8-9	33.5	. 0295	33.09		706. 13	21.02	29.02
9-10	32.6	. 0475	31.82		673.04	20.64	29.64
10-11	31.0	. 0338	30.52		641.22	20.65	30.65
11-12	30.0	. 0400	29.40		610.70	20.35	31.35
12-13	28.8	. 0347	28.30		581.30	20.18	32.18
13-14	27.8	. 0360	27.30		553.00	19.89	32.89
14-15	26.8	. 0299	26.40		525.70	19.61	33.61
15-16	26.0	. 0385	25.50		499.30	19.20	34.20
16-17	25.0	. 0200	24.75		473.80	18.75	34.95
17-18	24.5	. 0204	24.25		449.05	18.32	35.32
18-19	24.0	. 0208	23.75		424.80	17.70	35.70
19-20	23.5	. 0383	23.05		401.05	17.06	36.06
20-21	22.6	. 0177	22.40		378.00	16.72	36.72
21-22	22.2	. 0315	21.85		355.60	16.01	37.01
22-23	21.5	. 0233	21.25		333.75	15.52	37.52
23-24	21.0	. 0238	20.75		312.50	14.88	37.88
24-25	20.5	. 0244	20.25		291.75	14.23	38.23
25-26	20.0	. 0300	19.70		271. 50	13.57	38.57
26-27	19.4	. 0309	19.10		251. 80	12.97	38.97
27-28	18.8	. 0426	18.40		232.70	12.37	39.37
28-29	18.0	. 0278	17.75		214.30	11.90	39.90

$11=$ aqe interval; $2=$ percent surviving at beginning of aqe interval: 3 = retirement ratios; 4 = average ordinate ror aqe interval; 5 = interval area; 6 = remaining area to the right of the ordinate at the beginning of the age interval; 7 $=$ expectancy at beqinning of aqe interval: $8=$ probable life of average unit at beginning of age interval

Table 8. (Continued)

12	21	31	42	$5:$	61	72	81
29-30	17.5	. 0286	17.25		196.55	11.23	40.23
30-31	17.0	. 0294	16.75		179.30	10.54	40.54
31-32	16.5	. 0303	16.25		162.55	9.85	40.85
32-33	16.0	. 0438	15.65		146.30	9.14	41.14
33-34	15.3	. 0523	14.90		130.65	8.53	41.53
34-35	14.5	. 0345	14.25		115.75	7.98	41.98
35-36	14.0	. 0429	13.70		101.50	7.25	42.25
36-37	13.4	. 0597	13.00		87.80	6.55	42.55
37-38	12.6	. 0476	12. 30		74.80	5.93	42.93
38-39	12.0	. 0833	11.50		62.50	5.20	43.20
39-40	11.0	. 0909	10.50		51.00	4.63	43.63
40-41	10.0	. 1000	9.50		40.50	4.05	44.05
41-42	9.0	. 1111	8.50		31.00	3.44	44.44
42-43	8.0	. 1250	7.50		22.50	2.81	44.81
43-44	7.0	. 2143	6.25		15.00	2.14	45.14
44-45	5.5	. 2727	4.75		8.75	1.59	45.59
45-46	4.0	. 5000	3.00		4.00	1.00	46.00
46-47	2.0	1.0000	3.00		1.00	. 50	46.50

1145.53
1145.53

Average Service Life $=--100=11.45$ years

APPLICATION TO INVESTMENT DECISIONS

The thecry presented previously on engineering valuation, Enqineering economy and Markov chains is here applied tc human resource valuation.

A proqrag for cogputing present worth of future services

A ccmputer proqram is presented here and in appendix a (Fiqure 4) that will allow a manager to find the present worth of the compensation paid to employees in the department, assuming a constant annual percentage increase. The proqram applies the gradient theory presented earlier and uses the following notation:

```
Let \(\mathrm{Pw}=\) present worth of future compensation, \(p\)
    \(\mathrm{C}=\mathrm{fresent}\) salary, c
    R = annual salary increase in decimal percent. r
    AINT = value of money in decimal percent, i
    \(\mathrm{N}=\) job life expectancy, \(n\)
```

Job life expectancy (N) is based on the survivor curves developed previously in this paper, or more appropriately for a particular company, (N) shculd take into consideration survivor curves drawn for the specific jobs.

To illustrate the use of this program. suppose a department manaqer in the company that contributed the Career Colleqe Graduate data had six college graduates in the department. The average service life for these people was 8 years and the retirements followed an Iowa 04 dispersion.

Knowing the present length of service for each individual, the Iowa 04 table can be used to find life expectancy since frobable life is given in the table as a percent of average life and expectancy equals probable life minus age. To prepare the input to the program, a table like this was completed:

```
Dispersion Iowa 04
Averaqe Service Life = 8 years
Time Value cf Mcney = 8%
Department = accounting
```

Name	Present Length of Service	Erobabl Life	$\begin{aligned} & \text { Eife } \\ & \text { Expectancy } \end{aligned}$	Present Salary	```predicted Annual Salary Increase```
V. H. Phillips	s 1	9.2	8.2	8000.00	0.07
D. C. Jensen	10	20.5	10.5	16000.00	- . 05
J. L. Garcia	15	24.3	9.3	25000.00	- 05
F. C. Deter	5	14.9	9.9	10000.00	- 10
E. E. Heber	6	16.3	10.3	11000.00	. 08
L. D. Uthe	2	10.5	8.5	9000.00	- . 12

Output from this program, Figure 7, shows the present worth of future earnings.

Figure 5. Flow chart for present worth of future services
CATE: CCTOEEF 18, 1974

INTEFEST FATE: 0.080

NAME	PRESENT	JOB LIFE	AVERAGE ANNUAL SALARY INCREASE	PRESENT WORTH OF FUTURE
	SAL ARY	EXPECTANCY	IN DECIMAL \%	EARNINGS IN $\$$
V. H. PHILLIPS	8000.00	8.2	0.070	58754.55
D. Ce JEASEN	16000.00	10.5	0.050	136564.50
J. L. GAFCIA	25000.00	9.3	0.050	192066.88
F. C. DETER	10000.00	9.9	0.100	99600.50
E. E. WEEER	11000.00	10.3	0.080	104907.31
L. C. UTHE	9000.00	8.5	0.120	81502.31
				673396.00

An EConomic justification

The impact of human resource accounting on managerial decisions is the subject of research (12), since better decision-making is one of the motivating reasons for determining the value of h uman resources.

To provide a basis for further discussion, a hypothetical situation is presented. Assume an investment is being considered with equifment costs of $\$ 200,000,10$ year life. zero salvaqき, straight line depreciation and annual operating costs of $\$ 20,000$. Yearly revenue generated by the investment is $\$ 150,000$. Four additional people are required, each having an annual salary of $\$ 15,000$ with a $\$ 1,000$ annual increase and 12 year job life expectancy. The constant qradient affroach, $g=\$ 1,000$. is used here.

$$
\left.\begin{array}{rl}
\begin{array}{l}
\text { Eresent Worth of } \\
\text { Future Salary }
\end{array} & =4\left[(15,000)(\mathrm{p} / \mathrm{a})_{12}^{5 \%}+1,000(\mathrm{p} / \mathrm{g})_{12}^{5 \%}\right.
\end{array}\right]
$$

Next, the return on investment by both conventional and human resource methods could be examined.

	People as Operating Expense A	```people as Capital Expenditure B```
Reverue	150,000	150.000
$\begin{aligned} \text { Operating Expense } & 20.000+4(15,000) \\ + & 4(1,000)(4.922) \end{aligned}$	$=99,688$	20,000
Before Tax Cash Floy	50.312	130.000
200,000		
Depreciation -------	20,000	20,000
706,276		
12		58.856
Taxatle Income	30.312	51,144
Income Tax a 50\%	15.156	25,572
After Tax Cash Flow	35.156	104.428

Rate of Return Plan A

$$
\begin{aligned}
150.0 C 0 & =99.688+200.000(\mathrm{a} / \mathrm{p})_{10}^{i}+15.156 \\
(\mathrm{a} / \mathrm{p})^{i} & =-\frac{35.156}{200.000}=.1758 \\
i & =11.8 \%
\end{aligned}
$$

Fate of Feturn Plan E
(Assuminq a return on both physical and human assets)

$$
\begin{aligned}
& 150,000=20,000+200,000(\mathrm{a} / \mathrm{p})_{10}^{i} \\
& 104.428=200.000\left(\mathrm{a} / \mathrm{p}_{10}^{i}+70 \epsilon, 276(\mathrm{a} / \mathrm{p})_{12}^{i}\right. \\
& 10
\end{aligned}
$$

If the minimum attractive rate of return required is 11\%, but pecple are a scarce resource in this organization, it miqht be worthwhile to investigate other opportunities Where the rate of return on the total investment, including human rescurces is qreater than 5.6 .

Another alternative, anà periaps a more reasonable approach. would be to depreciate the human resources, but not deduct this frcm taxable income since the tax laws do not allow this deduction. The result for plan B would then be:

After Tax Cash Floy	114,844
Binus Lep. of Guman Res.	58,856
Adjusted After Tax Cash Floy	55,988

Bate of Return Plan B

$$
\begin{aligned}
55,988 & =200,000(\mathrm{a} / \mathrm{p})_{10}^{\mathrm{i}}+706,276(\mathrm{a} / \mathrm{p})_{12}^{i} \\
i & <0
\end{aligned}
$$

Moodruff (50). Pyle (40) and others wonld leave salaries as an expense and capitalize only the long range investrents in human assets. Those costs capitalized include recruiting, acquisition costs such as moving and physical examinations, formal training, informal training and familiarization, and investment kuilding after initial familiarization.

Markov chain example

Assume an employee starts in job 1 and expected service life $=3$ years. There are a total of 3 jobs with the following transition matrix.

		Tc Job		
		1	2	3
From	1	. 7	. 2	. 1
job	2	. 1	. 7	. 2
	3	. 1	. 1	. 8

The value expected to be derived from each job over a year's time is jcb $1=\$ 10.0 \mathrm{Co}$. job $2=\$ 20,000$. job $3=$ $\$ 30,000$.
$E(S)=10,000+10.000\left(p_{11}^{(1)}\right)+20.000\left(p_{12}^{(1)}\right)+30.000\left(p_{13}^{(1)}\right)+$ $10.000\left(p_{11}^{(2)}\right)+20.000\left(p_{12}^{(2)}\right)+30.000\left(p_{13}^{(3)}\right)$

In order to calculate $p_{i j}^{(2)}$, the two step transition probabilitiEs are equal to P. P.

$$
\left[\begin{array}{ccc}
.7 & .2 & .1 \\
.1 & .7 & .2 \\
.1 & .1 & .8
\end{array}\right] \cdot\left[\begin{array}{lll}
.7 & .2 & .1 \\
.1 & .7 & .2 \\
.1 & .1 & .8
\end{array}\right]=\left[\begin{array}{lll}
.52 & .29 & .19 \\
.16 & .53 & .31 \\
.16 & .17 & .67
\end{array}\right]=\mathrm{p}^{(2)}
$$

Since the employee in this example began in job 1, only the first $I C W$ of the 2 -stage transition matrix is needed.

$$
\begin{aligned}
& E(S)=10,000+10,000(.7)+20,000(.2)+30,000(.1)+ \\
& 10,000(.52)+20,000(.29)+30,000(.19)=\$ 40,700
\end{aligned}
$$

The present worth of $E(S)$ at 10 percent interest is then $10.000(\mathrm{p} / \mathrm{f})_{1}^{10}+10.000(.7)(\mathrm{F} / \mathrm{f})_{2}^{10}+20.000(.2)(\mathrm{p} / \mathrm{f})_{2}^{10}+$

$30.000(.19)(p / f)_{3}^{10}=\$ 33.208$

The steady-state equaticns can be expressed as

$$
\begin{aligned}
\pi_{1} & =\pi_{1} p_{11}+\pi_{2} p_{21}+\pi_{3} p_{31} \\
\pi_{2} & =\pi_{1} p_{12}+\pi_{2} p_{22}+\pi_{3} p_{32} \\
\pi_{3} & =\pi_{1} p_{13}+\pi_{2} p_{23}+\pi_{3} p_{33} \\
1 & =\pi_{1}+\pi_{2}+\pi_{3}
\end{aligned}
$$

Substituting values for $p_{i j}$ into the last three equations since one is redundant

$$
\begin{aligned}
\pi_{2} & =.2 \pi_{1}+.7 \pi_{2}+.1 \pi_{3} \\
\pi_{3} & =.1 \pi_{1}+.2 \pi_{2}+.8 \pi_{3} \\
1 & =\pi_{1}+\pi_{2}+\pi_{3}
\end{aligned}
$$

Sclving these equaticns provides the simultaneous solutions,

$$
\begin{aligned}
& \pi_{1}=.250 \\
& \pi_{2}=.312 \\
& \pi_{3}=.438
\end{aligned}
$$

The n-state transition matrix $w \in n \rightarrow \infty$ is

$$
I=\left[\begin{array}{lll}
.250 .312 .438 \\
.250 & .312 & .438 \\
.250 & .312 & .438
\end{array}\right]
$$

The 4-step transition probabilities are

$$
\mathrm{P}^{(4)}=\left[\begin{array}{lll}
.346 & .337 & .317 \\
.218 & .380 & .402 \\
.217 & .250 & .533
\end{array}\right]
$$

It can be seen that the 4 -step probabilities are approaching the steady-state probabiliti \in. In other words, after many years, assuming they stay, the probability of finding an employee in job 1, 2 , or 3 is. 250 . . 312 , and. 438 respectively.

If non-stationary transition probabilities are available from retirement ratic curves drawn for transition between jobs and exiting the company, then (a), (b) and (c) might represent these non-stationary probabilities and the n-step transition probabilities would be

$$
\begin{gathered}
(a) \\
\mathrm{P}^{(1)}=\left[\begin{array}{cccc}
.6 & .3 & 0 & .1 \\
.1 & .6 & .2 & .1 \\
.1 & .1 & .7 & .1 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

(b)

$$
\mathrm{P}^{(2)}=\left[\mathrm{P}^{(1)}\right] \cdot\left[\begin{array}{cccc}
.4 & .3 & .1 & .2 \\
0 & .5 & .3 & .2 \\
0 & .2 & .6 & .2 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
.24 & .33 & .15 & .28 \\
.04 & .37 & .31 & .28 \\
.04 & .22 & .46 & .28 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(c)

$$
E^{(3)}=\left[P^{(z)}\right] \cdot\left[\begin{array}{cccc}
2 & .4 & .2 & .2 \\
0 & .4 & .3 & .3 \\
0 & 0 & .5 & .5 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
.048 & .228 & .222 & .502 \\
.008 & .164 & .274 & .554 \\
.008 & .104 & .304 & .584 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The expected value of future services in this case for an employee starting in job 1 is

$$
E(S)=10.000+10.000\left(p_{11}^{(1)}\right)+20.000\left(p_{12}^{(1)}\right)+30.000\left(p_{13}^{(1)}\right)
$$

$+10.000\left(p_{11}^{(2)}\right)+20.000\left(p_{12}^{(2)}\right)+30.000\left(p_{13}^{(2)}\right)$
$+10.000\left(p_{11}^{(3)}\right)+30,000\left(p_{12}^{(3)}\right)+30,000\left(p_{13}^{(3)}\right)+\ldots$.
$=10.000+10.000(.6)+20,000(.3)+30,000(0)$
$+10,000(.24)+20,000(.33)+30,000(.15)$
$+10.000(.048)+20,000(.228)+30.000(.222)+\ldots$.

This is continued until the present worth of an additional period would add an insignificant amount to the total value of future services or until all values in the n-stage matrix are zero except for the exit probabilities. Computer programs are available to perform these multiplications easily, once the transiticn probabilities have been established from the retirement ratio curves.

CONCIUSIONS

Primary

1. Life analysis techniques should piove extremely useful in the valra*ion of human resources. The survivor, retirement frequency, and retirement ratio curves, along yith the techniques for their determination, are as applicable in human resource valuation as they are in industrial property valuation.
2. The Iowa survivor curves will adequately describe service Iife characteristics if the average service lives are of sufficient length. It is difficult to prescribe specific quidelines. The Iowa curves did not fit the utility company personnel when the majority of the employees left the first year, but many of those who remained stayed for over 20 years. This resulted in a survivor curve yith an initial sharp drcp and a long, horizontal tail. a rough guideline might be to examine the emplcyee separation characteristics the first year. If there is a reasonable loss of 10 to 50 percent, ,he Iowa curyes will ift, whereas a 70 percent or qreater loss cannot be described by the Iowa curves.
3. When the Iowa curves did fit the survivor characteristics, in almost all cases it was ano type curve, usually an 04 . This curve Lears a 工esemblance to a negative exponential and
```
was developed after the oriqinal Iowa curves. The two exceptions came from the simulated plant balances summary wich indicated that \(a \operatorname{B1}\) and \(L 2\) curve was appropriate.
```


SEccondary

1. Survivor curve shape characteristics have been investiqatsd adequately else where (20), but a cursory examination of the curves obtained in this research indicated two things. First, even though a negative exponential would seem to be a logical choice, it will not describe this data. How $\in \in \in$, the cverall resemblance indicates that it might be used for estimation purposes. Second, the method of fitting a pclyncmial to retirement ratios and converting to a survivor curve is still appropriate.
2. The average service lives for the utility, office, and manufacturinq orqanizations are shoun in Tables 4, 5 and 6. The length of service for the utility employees was on the order cf 3 tc 5 years, while the other two companies went from 3 to 18. Laborers, Ironworkers, and Clerical employees had very short service lives of .5 to 3 years, while in contrast, the Marketing emplcyees went up to 18 years in the case of one oriqinal group. These lives could be guidelines for other orqanizations in the event they were to investigate a $亠$ iuman iescurce measurement program. However, a more
desirable approach would be to use the techniques and proqrams presented here to establish survivor curves tailored to the particular organization.

Further research possibilities include refining the averaqe service life characteristics, since it would be desirable to ottain data showing the length of time employees spend in particular jobs within the same company. This would add accuracy to calculations of resource value regardless of whether future salary or future contribution is used as an indicator, and enable the establishment of characteristic non-stationary probability transition matrices for the Markov chain approach. Further study of actual retirement data might show the need for additional standard survivor curves that more accurately describe human service life characteristics. The depreciation rate of human assets, The effect of human reso orce value on investment decisions, and a method for establishing the contribution of the jobs of an orqanizaticn to the total services provided by the orqanization could aII be furtier investigated.

1. G. A. Eassett, "Employee Turnover Measurement and Human Rescurces Accounting," Human_Resource_Management. 11 (3). 21-30 (Fall 1972)
2. G. S. Becker, "Investment in Human Capital: A Theoretical Analysis." The Journal oŕ_Political_Economy, Supflement 70, 9-49 (Cctober 1962)
3. H. Eierman, Jr., C. P. Eonini, H. H. Hausman. "Quantitaさive Analysis for Business Decisions," Richard D. Irwin, Inc.. Homewood, Illinois, 1973.
4. M. J. Bcwman and R. G. Meyers, "Schooling, Experience, and Gains and Losses in Human Capital Through Miqration," Jonrnal of the_American_Statistical Association, 62, 875-898 (September 1968)
5. B. L. Brummet, "Accounting for Human Resources," Journal_of Accountancy. 130, 62-66 (December 1970)
6. R. L. Brummet, E. G. Flamholtz, and H . C. Pyle, "Human Besource Measurement-A Challenge for accountants," The Accounting Review, 43. 217-224 (April 1968)
7. T. K. Connelian, "Management Development as a Capital Investment," Human Resorrce Management. 11 (2), 2-14 (Summer 1972)
8. H. A. Cowles, "Predicticn of Mortality Characteristics of Industrial Property Groups:" unpublished Ph. D. thesis. Iowa State University, (1957)
9. J. Douthat, "Accounting for Personnel Training and Develofment Costs," Training_and Development_Journal. 24. 2-6 (June 1970)
10. Edison Electric Institute, "Methods of Estimating Utility Plant Life," A report of the Engineering Subcommittee of the Depreciation Accounting Committee, New York, N. Y., 1952.
11. H. C. Eggers, "Evaluation of Human Assets," Management Accounting, 53, 28-30 (November 1971)
12. N. S. Elias, "The Impact of Accounting for Human Fescurces on Decision-Making: An Exploratory Study." unpublished Ph.D. thesis, University of Minneapolis, (1970)
13. Fi. C. Erbe, "A Comparison of Actuarial and Simulared Elant-Eecord Methods of Property Account Analysis," unpublished M.S. thesis, Iova State University, (1971)
14. W. Fitch. B. Bissinger, E. Greene, "Methods of Estimatinq Service Life and Depreciation,: reprinted by Depreciation Programs, Kestern Michigan University, Kalamazoo, Michigan. June 1971.
15. E. Flamhcltz. "Toward a Theory of Human Resource Value in Fcrmai Organizations," The_Accounting Reviey, 53, 656-678 (October 1972)
16. E. Flamicltz, "assessing the Validity of a Theory of Human Resource Value: A Field Study," unpublished research, Columbia University, (1972)
17. E. Flamholtz, "Human Resource Accounting: A Reviey of Theory and Research," presented at the $32 n d$ annual meeting of the Academy cf Management, Minneapolis, Minnescta, (Auqust 15, 1972)
18. E. Flamholtz, "Human Resources Accounting-Measuring Positional Replacement Costs," Human_Resource Management. 12. 8-16 (SFring 1973)
19. E. Flamhcltz, "A Model for Human Resource Valuation: A Stochastic Process with Service Rewards," The Accounting Review. 46, 253-267 (april 1971)
20. E. Flamhcltz, "On the 0 se of the Economic concept of Human Cafital in Financial Statements: A Comment," The Acccunting Review. 47, 148-152 (January 1972)
21. C. T. Haworth and D. W. Basmussen, "Human capital and Inter-Industry Wages In Manufacturing," Review of Economics_and_statistics. 53. 376-380 (November 1971)
22. J. S. Hekimian and C. H. Jones, mut People on Your Balance Shett," Haryard_Business_Review, 45, 105-113 (January 19б7)
23. A. J. ienderson, "Actuarial Methods for Estimating Mortality Parameters of Industrial Property," unpublished Ph. I. thesis, Iowa State üniversity, (i968)
24. F. S. Hillier, G. J. Li \in berman, "Introduction to Operaticns Research," Hclden-Day, Inc., San Francisco, 1967.
25. R. A. Howard, "Dynamic Erobabilistic Systems," John wiley and Sons. Inc., $N \in W$ York, 1971.
26. B. Jaqgi and H. Lau, "Tcward a Model for Human Resource Valuaticn." The Accounting Review, 49. 321-329 (April 1974)
27. T. Johnscn, "Returns from Investments in Human Capital," American_Economic_Review. 60. 546-560 (Seftember 1970)
28. G. E. Lamp, Jr., "Dispersion Effects in Industrial Froferty Life Analysis," unpublished Ph.D. thesis, Iowa State Universiさy. (1968)
29. S. Lawrence, "Putting People on The Balance Sheet." Personnel Management. 3, 30-31 (January 1971)
30. B. Lev and A. Schwartz, "On the Use of Economic Concept of Human Capital in Financial Statements," The Accounting_Review, 46, 103-112 (January 1971)
31. B. Lev and A. Schwartz, "On the use of Economic Concept of Human Capital in Financial Statements: A Reply," The Accounting_Reyiew, 47, 153-154 (January 1972)
32. R. Likert, "The Human Organization: Its Management and Value," McGraw-Hill Book Company. New York. 1967.
33. B. W. Iindgren, G. W. McElrath, "Introduction to Probability and Statistics," The Macmillan Company, New York, 1959.
34. A. Marston, B. Winfrey, and J. Hempstead, "Engineering Valuaticn and Depreciation," Iowa State University Press, Ames, Iowa, 1953.
35. T. E. Martin, W. R. Mey \in, and D. H. Saunders, "Human Resource Accounting-Phase Two," presented at the AGA-EEI Accounting Conference, San Francisco, May 7-9. 1973.
36. D. D. McCracken and W. S. Dorn, "Numerical Methods and Fortran Programming," Jchn Wiley and Sons, New York, 1964.
37. J. Mincer, "Investment in Human Capital and Personal Inccme Distributions," The Journal of Political Economy, 66. 281-302 (Auqust 1958)
38. J. Mincer, MOn-the-Job Training Cosis, Returns and Some Implications," The_Journal_of_Political_Economy, 70, 50-79 (October 1962)
39. W. C. Eylə, "Accounting for Your People," Innovation, 10. $46-55$ (1970)
40. W. C. Pyle, "Monitoring Human Resources-on Line," Michigan_Business_Review, 22. 19-32 (July 1970)
41. W. C. Eyle and R. Likert, "Human Resource Accounting", Einancial Analyst Journal. 26, 69-78 (September 1970)
42. S. Sadan and L. B. Auerbach, "A Stochastic Model for Human Fesources Valuation," California Management Review. 16. 24-31. (Summer 1974)
43. I. \quad. Schultz, "Investment in Human Capital," American Econcric Review. 51. 1-17 (March 1961)
44. T. W. Schultz, "Reflections on Investment in Man," The Journal of_political_Eccnomy, 70, 1-9 (October 1962)
45. G. W. Smith, "Engineering Economy," Iowa State University press, Ames, Iowa, 1973.
46. H. A. Taha, "Operations Research, An Introduction," The Macmillan Company, New York, 1971.
47. B. A. Weisbrod. "The Valuation of Human Capital." The

48. M. Weiss, "Minere Human Resource Accounting Stands Today," Administrative Management. 33, 43-68 (November 1572)
49. R. Winfrey, "Statistical Analysis of Industrial Property Retirements," Iowa State University Engineering Research Institute Bulletin 125, Revised April 1967.
50. R. L. Woodruff, Jr.. "What Price People," The_personnel Administrator. 14 (1). 17-20 (January 1969)
51. M. S. Wortman, Jr., "Manpower: The Management of Human Rescurces," Academy of Management_Journal. 13, 198-206 (June ig70)
52. R. Wright, "Managing Man as a Capital Asset," Personnel Journal. 49. 290-298 (April 1970)

ACK MOULEDGEMENTS

I would like to thank L . Harold A. Cowles for his overall guidance and the direction given in analogies between the valuation of physical property and employees. Also, Dr.
 comparison between the Iowa survivor curves and the experimental data. The three companies providing data, although they would prefer not to be mentioned by name, were especially generous with themr time and resources. Hithout their cooperation, this research could not have been started. Financial support was provided through the efforts of Dr. Clifford E. Smith and the American Society for Personnel Àdministration. This support was truiy appreciated and I hope any contribution made to human resource valuation resulting from this research will compensate A.S.P.A. for their generosity.

Sheryl, Chris, and Laura vere very patient and understanding in allowing me the long hours necessary to complete this project.

APEENDIX A: COMPUTER PROGRAM LISTINGS

```
FORTRAN IV G LEVEL 21 NAIN
    C THIS PROGRAM COMPUTES THE GRESENT WORTH OF FUTURE SERVICES,
C ASSUMING THAT SALARY IS A GOOD ESTIMATE OF THE WORTH OF THOSE
C SERVICES.
C THE FIRST INPUT CARD CONTAINS THE DEPARTMENT NAME IN COLUMES
    1-40, DATE 41-60, VALUE OF MONEY(AINT) 61-65.
    EACH SUCCEEDING CARD CONTAINS NAME IN COLUMES 1-24, PRESENT
    SALARY(C) 25-33, JOB LIFE {:XPECTANCY(EX) 34-38,
    ANNUAL INCREASEIRI 39-43.
    DIMENSION DEPT(10),DATE(5),NAME(6)
    INTEGER*4 DEPT,DATE,NAME
    READ(5,2)DEPT,DATE,AINT
2 FORMAT(10A4,5A4,F5.3)
    HRITE(6,4)DEPT,DATE,AINT
4 FORMAT/'1 DEPARTMENT: 1,10A4//,' DATE: 1,5A4//,
    -' INTEREST RATE: ',F5.3)
    WRITE(6,6)
6 FGRMAT (1H048X, 'AVERAGE ANNUAL PRESENT WORTH"/9 %,26X, 'PRES
    - JOB LIFE SALARY INCREASE OF FUTURE'/' 1,9X.'NAME',13X.
    -'SALARY EXPECTANCY IN DECIMAL % EARNINGS IN $'.1%
    TOTAL=0.0
    7 READ (5,8,END=50) MAME,C,EX,R
    8 FORMAT(6A4,F9.2,F5.1,F5.3)
```

 Figure 8. Present worth of future services
    ```
C C=PRESENT SALARY, R=ANNUAL INCREASE IN DECIMAL %, EX=JOB LIFE
C EXPECTANCY, AINT =VALUE OF MONEY IN DECIMAL %
    IF(R.GT.AINT) GO TO 10
    IF(R.LT.AINT) GO TO }1
    PH=(C*EX)/(1.0+A INT)
    GO TO }1
    10W=(1.0+R)/(1.0+AINT)-1.0
        PW=(C/(1.0+AINT))*(((1.0+W)**EX-1.0)/W)
        GO TO }1
    12W=(1.0+AINTI/(1.0+R)-1.0
        PW=(C/(1.0+R))*(((1.0+W)**EX-1.0)/(W*(1.0+W)**EX))
    14 TOTAL=TOTAL+PW
        WRITE(6,16)NAME,C,EX,R,PW
    16 FORMAT (1X6A4,1X,F9.2,4X,F5.1,10X,F5.3,11X,F10.2)
        GO TO 7
    50 WRITE(6,18)
    18 FORMAT(70X,'-------------)
        WRITE(6, 20)TOTAL
    20 FORMAT (68X,F12.2)
        stop
        END
```

Figure 8. (Continued)

```
    $JOB 'EARTA',TIME=5,PAGES=10
    C THIS PROGRAM CALCULATES A CHI-SQUARED STATISTIC BASED ON THE
C DIFFERENCE BEThEEN ACTUAL RETIREMENTS AND RETIREMENTS TAKEN FROH
C THE BEST FITTING IOWA CURVE.
C THE PROBABILITIES OF RETIREMENT COME FROM INTEGRATION OF THE
C RETIREMENT FREQUENCY CLRVE, ANOTHER COMPUTER PROGRAM.
C T.A.BARTA, I.S.U., JUNE 1, }197
C RETIREMENT RATE CHI-SQUARE PROGRAM
    REAL PROB,ACCUM, ERET
        INTEGER ARET,I,N
        DIMENSICN ARET (30), PROB(30), ERET(30),NEXP(30)
        READ(5,10)N
    C N=THE NUMBER OF CLASSES, ARRANGED SO THERE ARE AT lEAST 5
        RETIREMENTS PER CLASS IF POSSIBLE.
        10 FORMAT(I2)
        READ(5,15)(ARET(I),I=1,N)
        15 FORMAT(16I5)
        ARET(I) CONTAINS THE ACTUAL RETIREMENTS IN EACH CLASS
        READ(5,20)(NEXP(1),I=1,N)
    20 FORMAT(16I5)
C NEXP = THE # DF PEOPLE IN THE ORIGINAL GROUP
        READ(5,25)(PROB(I),I =1,N)
        25 FORMAT(8F10.7)
        PROB(I) CONTAINS THE PROB. OF RETIRING DUR ING EACH INTERVAL
            IN DEC IMAL FORM.
        ACCUM=0
        DO 30 I=1,N
        ERET(I)=NEXP(I)*PROB(I)
    C ERET(I)= EXPECTED # OF RETIREMENTS
```

Figure 9. Retirement rate chi-square test

```
15 IFINEXP(I).EQ.O\GO TO 30
16
        ACCUN=ACCUM*((ARET(I)-NEXP(I)*PROB(I))**2)/(NEXP(I)*PROB(I)*(I-PR
        10B(I)|)
        WRITE(6, 27)ACCUM
    27 FORMAT(" ',"ACCUM = ',F12.6)
    30 CONTINUE
        WRITE(6,32)ACCUM
        32 FORMAT('O','CHI-SQUARE STATISTIC= 0,F12.6)
        WRITE(6,35)(ARET(I),I=1,N)
        35 FORMAT(" ', 'ACTUAL RETIREMENTS= ',1315)
        WRITE(6,37)(ERET(I),I=1,N)
        37 FORMAT(:', EXPECTED RETIREMENTS= 1,13F5.1)
        WRITE(6,40)(NEXP(I),I=1,N)
        40 FORMAT("','ORIGINAL GROUPS = ',1315)
        WRITE(S,45)(PRCB(I),I=1,N)
        45 FORMAT': ', PROB. OF RETIRE. = ',10F10.7)
            STOP
    END
```



```
EXPECTED RETIREMENTS=
PROB. OF RETIRE. = 0.2088 721 0.1772131 0.1312222 0.0902599 0.0624076 0.0451168
```

Figure 9. (Continued)

```
    $JOB 'EARTAI TIME=5,PAGES=10
    THIS PROGRAM CALCULATES A CHI-SQUARED STATISTIC BASED ON THE
        DIFFERENCE BETWEEN ACTUAL RETIREMENTS AND RETIREMENTS TAKEN FROM
        THE BEST FITTING IOWA CURVE.
        THE PROEASILITIES OF RETIREMENT COME FROM INTEGRATION OF THE
        RETIREMENT FREQUENCY CLRVE, ANOTHER COMPUTER PROGRAM.
        T.A.BARTA, I.S.U.. MAY 30, 1974
        ORIGINAL GROUP CHI-SQUARE PROGRAM
        REAL PROB,ACCUM,ERET
        INTEGEP. ARET,I,N
        DIMENSICN ARET (30), PROB(30), ERET(30)
        READ(5,10)N
        A=THE NUMBER OF CLASSES, ARRANGED SO thERE ARE AT LEAST 5
            RETIREMENTS PER CLASS IF POSSIBLE.
        10 FORMAT(I2)
        READ(5,15) (ARET(I), I=1,N)
    15 FORMAT(16I5)
        ARET(I) CONTAINS THE ACTUAL RETIREMENTS IN EACH CLASS
        READ(5, 20)NEXP
    20 FORMAT(15)
        NEXP= THE # OF PEOPLE IN THE ORIGINAL GROUP
        READ(5,25)(PROB(I),I=1,N)
        25 FORMAT(8F10.7)
        PROB(I) CONTAINS THE PROB. OF RETIRING DURING EACH INTERVAL
            IN DECIMAL FORM.
        ACCUM=0
        CO 30 I=1,N
        ERET(I)=NEXP*PROB\I|
        ACCUM=ACCUM+(ARET(I) -NEXP*PROB(I))**2/(NEXP*PROB(I))
            Figure 10. Original group chi-square test
```


30 CONTINUE

``` WRITEI6,32JACCUM
32 FORMAT('0.,'CHI-SQUARE STATISTIC= ',F12.6) WRITE(6,35)(ARET(I), I=1,N) 35 FORMAT(' ', 'ACTUAL RETIREMENTS = ',1315) WRITE(6,37)(ERET(I),I=1,N) 37 FORMAT(' ','EXPECTED RETIREMENTS= \(1,13 F 5.11\) WRITE(6,40)NEXP
40 FORMAT(' ', ORIGINAL GROUP \(=1,151\) WRITE(6,45)(PROB(I),I=1,N)
45 FORMAT(' ' \({ }^{\prime}\) PROB. OF RETIRE. \(=0,10 F 10.71\) STOP
END
\$ENTRY
```

```
CHI-SQUARE STATISTIC= 
EXPECTED RETIREMENTS= 5.0 4.8 4.5 4.1 3.7 3.2 2.7 2.3 2.0 1.7 20.0
ORIGINAL GROUP = 54
PROB. OF RETIRE@= 0.0929183 0.0894839 0.0839597 0.0767005 0.0682129 0.0591213
PROB. OF RETIRE. = 0.0505048 0.0428612 0.0362560 0.030834 0.3697067
```

```
            -BARTA',TIME=5,PAGE S=10
THIS FROGRAM PERFORMS INTEGRATION OF A GIVEN FUNCTION BY THE
TRAPEZOICAL RULE AND CAN BE FOUND ON PAGE 297 OF THE IBM
SCIENTIFIC SUBROUTINE PACKAGE. IT COMPUTES AN APPROXIMATION
FOR INTEGRAL FCT(X) SUMMED OVER X FRDM XL TO XU.
FUNCTICN FCT SHOULD BE CHANGED DEPENDING ON THE RETIREMENT
            FREGUENCY CURVE.
        XL=LOWER BGUND OF INTERVAL.
        XU=LIPPER BRUND OF INTERVAL.
        EFS=UPPER BCUND OF ABSOLUTE ERROR.
        NOIN=DIMENSION DF THE AUXILIARY STORAGE ARRAY AUX.NDIM-1 IS THE
            MAXIMUM # OF BISECTIONS OF THE INTERVAL (XL,XU).
        FCT=THE NAME OF THE EXTERNAL FUNCTION SUBPROGRAM USED.
            Y=THE RESULTING APPROXIMATION FOR THE INTEGRAL VALUES.
        IER=A RESULTING ERROR PARAMETER.
        AUX=AN AUXILIARY STCRAGE ARRAY WITH DIMENSION NDIM.
        ERROR PARAMETER (IER) CODE:
            0=NO ERROR.IT WAS POSSIBLE TO REACH THE DESIRED ACCURACY.
            1=IMPOSSIBLE TO REACH THE DESIREO ACCURACY DUE TO ROUNOING
            ERRORS.
            2=IMPOSSIBLE TO CHECK ACCURACY BECAUSE NDIM<5,OR THE REQUIRED
            ACCURACY COULD NOT BE REACHED WITHIN NDIM-1 STEPS.NDIM
            SHOULD BE INCREASED.
WRITTEN BY TOM BARTA, I.S.U., MAY 5,1974
EXTERNAL FCT
REAL XL,XU,EPS,Y,X,TOTAL
```

Figure 11. Integration of retireaent ratio curve
INTEGER NDIM,IER
DIMENSION AUX(50)
TOTAL $=0$
$5 \operatorname{READ}(5,10, E N D=25) \mathrm{XL}, \mathrm{XU}, \mathrm{EPS}$, NDIM
10 FORMAT(F7.3,F7.3,F4.2,13)
WRITE(6,15)XL, XU,EPS,NDIM
15 FORMAT('0','XL=',F7.3,' XU=',F7.3,' EPS=',F4.2,' NOIM=',13)
CALL GATR(XL, XU, EPS, ND IM,FCT,Y,IER,AUX)
WRITE(t, 20)IER,Y
20 FORMAT(" ',"ERROR PARAMETER= ",I1,/" ','INTEGRAL APPROXIMATION= ",
1F12.5)
TOTAL $=$ TOTAL $+Y$
GOTO 5
25 HRITE(6,301TOTAL
30 FORMAT('0', 'TOTAL AREA $=1, F 12.6$)
STOP
END
C THIS FUNCTION SUBPROGRAM CONTAINS THE EQUATION TO BE INTEGRATED
FUNCTICN FCT (X)
FCT $=11 *(1+(.1 * X+1.6) * * 6) * *(-.6)+.59863384$
RETURN
END
SENTRY
$X L=-10.0 C 0 \quad X U=-7.500 \quad E P S=0.10 \quad$ NDI $M=20$
ERROR PARAMETER $=0$
INTEGRAL APPROXIMATICN $=26.63618$
Pigure 11. (Continued)

```
XL= -7.5CO XU= -5.000 EPS=0.10 NOIM= 20
ERROR PARAMETER= 0
INTEGRAL APPROXIMATICN= 20.40346
XL= -5.0CC XU= -2.500 EPS=0.10 NOIM= 20
ERROR PARAMETER= 0
INTEGRAL APPROXIMATICN= 12.96222
XL= -2.5CC XU= 0.000 EPS =0.10 NDI }\mu=2
ERROR PARAMETER=0
INTEGRAL APPRCXIMATICN= 8.01120
XL= 0.000 XU= 2.500 EPS=0.10 NOIM= 20
ERROR PARAMETER= 0
INTEGRAL APPROXIMATICN= 5.32291
XL= 2.500 XU= 5.000 EPS=0.10 NOIM= 20
ERROR PARAMETER= 0
INTEGRAL APPROXIMATICN= 3.87068
XL=5.000 XU= 34.000 EPS =0.10 NOIM= 20
ERROR PARAMETER= 0
INTEGRAL APPROXIMATICN= 22.84993
TOTAL AREA= 100.056500
```

Figure 11. (Continued)


```
    Figure 12. Least squares polynomial curve fit
```

```
    K=I + J-2
        IF(K)29,29,28
    28 A(I,J)=P(K)
        GO TO }3
    29 A(1,1)=NUMBER
    30 CONTINUE
    E(1)=0.0
    DO 21 J=1,NUMBER
    21 B(1)=E(1)+Y(J)
    DO 22 I=2,N
    B(I)=0.0
    DO 22 J=1,NUMBER
    22B(I)=B(I)+Y(J)*X(J)**(I-I)
    NM1=N-1
    00 300 K=1,NML
    KP1=K+1
    L=K
    DO 400 I=KP1,N
    IF(ABS(A(I,K))-ABS(A(L,K)))400,400,401
401 L=I
400 CONTINUE
    IF(L-K)500,500,405
405 00 410 J=K,N
        TEMP=A(K,J)
        A(K,J)=A(L,J)
        410 A(L,J)=TEMP
        TEMP = E(K)
        B(K)=B(L)
        B(L)=TEMP
500 00 300 I=KP1,N
Figure 12. (Continued)
```

```
        49 FACTOR=A(I,K)/A(K,K)
        A(I,K)=0.0
        CO 301 J=KP1,N
    301 A(I,J)=A(I,J)-FACTOR*A(K,J)
    300 E(I)=E(I)-FACTOR*B(K)
        C(N)=B(N)/A(N,N)
        I=\M1
    10 IP 1=1+1
        SUM=0.0
        DO 700 J=IP1,N
    700 SUM=SUM+A(1,J)*C(J)
        C(I)=(B(I)-SUM)/A(I,I)
        I=I-1
        IF(I) 800,800:710
    800 PRINT 799,M
    799 FORMAT('OTHE DEGREE',I3,' POLYNOMIAL FOLLOWS')
        CO 900 I=1,N
    900 PRINT 901,I,C(I)
    901 FORMAT(I5,F15.7)
        M=M+1
        IF(M-IDEG) 100, 100,902
    902 STCP
    END
$ENTRY
THE dEGREE 1 POLYNCMIAL FOLLOWS
    1 0.5778247
    2 -0.0130621
Fi.gure 12. (Continued)
```

```
THE DEGREE 2 POLYNOMIAL FOLLOHS
    1 0.7C85751
    2 -0.0325546
    3 0.0004133
THE DEGREE 3 PCLYNCMIAL FOLLDWS
    1 0.8369154
    2 -0.0747247
    3 0.0027579
    4 -0.0000333
THE DEGREE & PCLYNOMIAL FOLLOWS
    1 0.9060558
    2-0.1.141264
        0.0067803
        -0.0001688
        0.C000014
THE DEGREE 5 POLYNOMIAL FOLLOWS
\(1 \quad 0.9125715\)
\(2-0.1216782\)
\(3 \quad 0.0081980\)
\(4 \quad-0.0002595\)
\(5 \quad 0.0000038\)
\(6 \quad-0.0000000\)
```



```
    Ti. GEi LIST(N):
    2J. 1=i;
    5:. 3T1RT: Y=73.32345-1.2?301*1+0271339*1*1-0.232341*1*1*1:
    Si\bullet HUT LIST(Y);
    e2. I=1+1;
    S5. IF I>N THEV GO TO DOVE;
    7a- SO TO START:
    こi. JOVE: END ROLY:
?
```

Figure 13. Percent surviving, given a polynomial survivor curve

```
Z. / AGIVEN A POLYNOMIAL EXPRESSION FOR A RETIREMENT
RATIO CURVE, THIS PROJRAM WILI COMPITE THE PERCENT SURVIVING FOR AGES
FROM D TO N IN INCREMENTS OF 10*/;
    3. /*if the retiremevi ratio goes negative, it IS
ADJUSTEJ T0 Ø.*/;
    5. DEClare y Shaf(100) vati:
    10. PIJT LIST('FOR HON MANY YEARS DO YOU #AVT TO EXTE:O
THE SURVIVOR GURVE?');
    20. GET LIST(:4);
    30. PUT LISJ\'INPST THE POLYNOMIAL EXPRESSIOV FOR Y. DO
Noi inflijoe the defendevt variagle y or the = signe use the letter I
FOR THE VARIABIE NAME.'):
    40. READ INTO(Y) ;
    45. I=0;
    50. SURV=10e:
    55. START: PUT IMAGE(IISURV)(IM):
    56. IM: IMAGE;
        --- ---.----
    E0. }\quad1=1+1
    E5. IF I>N THEN GO TO DONE;
    7E. RR=EVAL(Y);
    13. It RR<O THEN RR=8;
    75. SURNEN=SURV-FR*SURV;
    3C. . SUKV=SURNEW;
    シミ. GO TO START:
    GO. DONE: END SURV;
?
```

Figure 14. Percent surviving, given a polynomial retirenent ratio curye

AEFENDIX B: COMPARISON OF STUB, SMOOTHED AND IOWA SURVIVOR CURVES

Percent Surviving

20

10

| 0. | 4 | 8 | 12 | 16 | .20 | 24
 Age | 28
 (Years) | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 16. Comparison of stub survivor curve, smoothed curve, and Iowa curve, Manufacturiag Marketing, 1961-63 experience band

Figure 19. Comparison of stub survivor curve, smoothel curve, and Iova curve, Manufacturing Marketing, 1970-72 experience band

Figure 20. Comparison of stub survivor curve, smoothed curve, and Iowa curve, Office, Career Career College Graduates, 1961-63
experience band

Figure 21. Comparison of stub survivor curve, smoothea curve, and rowa

 curve, Office, Career $\operatorname{college}$ Graduates, 1964-66 experience band

Figure 22. Comparison of stub survivor curve, smoothei curve, and Iowa curve, Office, Career col lege Graduates, 1367-69 experience band

Figure 23. Comparison of stub survivor curve, smoothed curve, and Iowa curve, Office, Career こollege Graduates, 1970-71 experience band

Figure 24. Comparison of stub survivor curve, smoothed curve, and rowa curve, Utility Meter Readers, 1969-71 experience band

Figure 27．Comparison of stub survivor curve，smoothed curve，and Iowa curve，Utility Mechanics，1969－71 experienze bani

Figure 29. Comparison of stub survivor curve, smoothej curve, and Iowa
curve. Utility Mechanics, $1971-73$ experience bani curve, Utility Mechanics, 1971-73 experiense bani

Rigure 32. Comparison of stub survivor curve, saoothel arve, and Iowa curve, Utility Coal and. Ash Handlers, 1971-73 experience band

Pigure 33. Comparison of stub survivor curve, smoothed curve, and Iowa curve, Utility Laborers, 1969-71 experience band

Figure 35. Comparison of stub survivor curve, smoothed curve, and Iona curve, Utility Laborers, 1971-73 experience band

Figure 37. Comparison of stub survivor curve, smoothed curve, and Iowa curve, Utility Ironworkers, 1970-72 experience band

Figure 38. Coaparison of stub survivor curve, smoothed curve, and Iowa curve, Utility Ironworkers, 1971-73 experience band

Figure 40. Comparison of stub survivor curve, smoothed curve, and Iova curve, Utility Union Eaployees, 1970-72 experience band

Figure 41. Conparison of stub survivor curve, smoothed curve, and Iowa curpe. Utility Union Enployees, 1971-73 experience band

Figure 42. Manufacturing Marketing, original group, 1958-60

Figure 43. Manufacturing Marketing, original group, 1961-63

Figure 44. Manufacturing Marketing, original group, 1964-66

Figure 45．Manufacturing Marketing，original group，1967－69．

Figure 46. Office Career こollege 3raduates, original jroup, 1961-63

Pigure 47. Office Career こollege Graduates, original group, 1964-66.

Figure 48. Office Career college Graduates, original group, 1967-69

Figure 49. Utility Meter Readers, original group, 1969-71

Figure 50. Utility Meter Readers, original group, 1970-72

Figure 51. Utility Mechanics, original group, 1969-71

Pigure 52. Utility Mechanics, original group, 1970-72

Figure 53. Utility Coal and Ash Handlers, original group, 1969-71

Pigure 54. Utility Coal and Ash Handlers, original group, 1970-72

Figure 56. Utility Ironworkers, original group, 1970-72

Figure 57. Utility Laborers, original group, 1969-71

Figure 58. Utility Laborers, original group, 1970-72

Figure 59. Utility Union Employees, original group, 1969-71

Figure 60. Utility Union Eaployees, original group, 1970-72

APPENDIX C: H ISTORICAL ARRANGEMENT OF DATA, TREND ANALYSIS, SIMULATED RLANT RECORD TABLES, ANL CGI-SQUARE DATA

Table 9. Historical arrangemert of Manufacturing Marketing Employees

Table 9. (Continued)

Table 9. (Continued)

Table 9．（Continued）

	1958	\checkmark ．	\therefore 。	0.	\checkmark ．	－	J．	0.	\therefore 。	0.	ग．
		\therefore ．	3 。	3.	\therefore	こ。	3.	1.	0.	\bigcirc	3.
	1959	1.	0.	$\dot{\sim}$	3.	\cdots	3.	0.	c.	\because ．	\bigcirc ，
		\therefore 。	J．	J．	？．	\bigcirc	3.	0.	0.	\because	3.
	1960	\cdots	1.	5.	3.	\cdots	J．	3.	0.	2.	0.
		\bigcirc	\bigcirc.	S．	\therefore	\therefore ，	J．	0.	0.	2.	0.
	L9E1	i．	－．	1.	\therefore 。	2.	3.	0.	$\dot{\sim}$	\bigcirc	0.
		i．	3.	U．	3.	J．	3.	0.	0.	0.	3.
	1902	1.	J．	0.	1.	3.	0.	0.	2.	0.	3.
		j．	3.	0.	0.	0.	0.	0.	0.	0.	J．
	1963	2.	1.	0.	0.	1.	0.	0.	0.	0.	0.
		i.	3.	0.	0.	0.	0.	0.	0.	0.	0.
	1964	0.	2.	1.	0.	0.	1.	0.	0.	0.	0.
		0.	0.	0.	3.	0.	J．	0.	0.	0.	0.
	1965	3.	6.	2.	1.	0.	0.	1.	0.	0.	0.
			J．	\therefore ．	\therefore－	i ．	こ。	0.	0.	0.	0.
	1500	三。	3.	3.	2．	1.	3.	0.	1.	0.	？．
		¢	J．	\therefore ．	3.	\therefore－	\because ．	0.	2.	\therefore 。	3.
	1967	＝	$4 \cdot$	\vdots－	$0 \cdot$	\therefore ．	3 ．	J．	3．	！．	2．
		\cdots	\therefore－	－	\therefore－	3	3 。	0.	c．	3.	J．
	1905	\because	0.	7.	三．	3.	2.	0.	3.	J．	1.
		\therefore ¢	0.	\therefore ．	3.	\bigcirc－	3.	0.	0.	0.	0.
	1505	2．	4.	\therefore	3.	E．	5.	2．	0.	2.	\therefore ．
		〕．	0.	\cdots ，	ว．	0.	J．	0.	0.	0.	j.
	197こ	i．	2.	\rightarrow－	6．	3.	3.	6.	2.	0.	0.
		0.	3.	\therefore ．	ง．	0.	0.	0.	C．	0.	3.
	1971	t.	2.	$\underline{2}$	4.	台。	3.	3.	t ．	2.	3.
		i．	0.	\therefore	3.	0.	3.	0.	0.	0.	5.
	1972	$6 .$	$6 .$	2.	－	4.	6.	3.	8.	6.	2.
		‥	0.	\bigcirc.	\therefore ．	0.	J．	0.	0.	$\dot{\sim}$ ．	1.
	こち73	3.	6.	5.	2.	2.	4.	6.	3.	8.	6.
		i。	0.	0.	0 。	0.	\bigcirc.	0.	0.	0.	0.
rotal	EXP．	52.	48.	42.	35.	33.	30.	26.	20.	17.	9.
TOT4L	RET．	\cdots	－	1.	0.	！．	0.	0.	C．	0.	1.

Table 9. (Continued)

Table 9. (Continued)

Table 10．Actuarial trend analysis of Manufacturing Marketing Employees

		－130．r	こ AVER．：	，$=:$	\therefore－		\therefore ：12：ME：	
	のここにされざ，！	Fin $\mathrm{i}^{\text {a }}$	\because	$\cdots:$	：2：vors		ごご号	
	－ 5 \％	ここし々こと	ごらいご		－！¢¢	ミジアシ	－jobe	－ロ \％
	こラ41－：94：	19300	！－3	$\therefore \because$.	\therefore－	\therefore	j．	\therefore
		：7\％．0	：19，	\because	\because	3.	2．	\because
	－943－i9．5	；99．0）	$\because 1$.	；i．	\therefore	2.	3.	\because
	1944－1540	197.5	！ 5%－		\therefore－	\because	3.	）．
	1945－19．，？	194.0	\％\％：	\％ $7 \times$	3	3	3.	\because
	1946－1948	1900	\％¢\％．	：习，	\cdots	\because	\cdots	\because
	194．7－1960	192．0	15 Ca	：$\cdot \cdot$	j．	9.	\therefore ，	2．
	1948－1550	155.9	13．j	155.9	3.	5.	三•	5.
	1；45－1：	140.2	\therefore.	\therefore 二；	\checkmark	7.	7.	\bigcirc
	1956－：9\％	130．，	\cdots	132.0	1.	9.	\therefore	三．
		1：3．\％	\％	\therefore ，	\cdots	\dagger ．	\because	\cdots
	195こー！¢－－	！ 93.4	\cdots	i $\%$	\because	4.	4	\cdots
	95j－20：	133.7	\％	． $5 \cdot$	\square	\vdots	${ }^{4}$ ．	\vdots
	175－4－95：	$1<j . \%$	ध．．	\because	\therefore	\therefore ，	： 1.	\because
	¢ ¢5E－2j！	1 \％os	$\because=$	\cdots	\therefore	：	： 3	\therefore
	155c－294	103．：	$\therefore \cdot$	\because	！¢	4.	$\stackrel{\square}{\square}$	\because
	1557－959	7. ？	$\therefore: \cdot$	：．．	：	\because	： 9	\cdots
	－55－2	14.5 0.6	－． 3	：$\because \cdot$.		\cdots	1！	\cdots
		4.1	－ 0.2	\therefore	－．	\bigcirc ，	\％．	\therefore ，
	： $5=:-$ ：${ }^{\text {，}}$ ，	$\because, 3$	\therefore.	$\cdots \cdot$	\cdots	\cdots	$\vdots \because$	：
	：500－． 6 ．	31．${ }^{\text {a }}$	\ldots	\therefore •	\therefore－	\therefore \％	\cdots ．	\therefore－
	2＇tes－${ }^{\text {a }}$	$\therefore 6.7$	\cdots	：$:$ ．	\therefore ．	\because－	7.	－
	¢ 6 － x	i．1．${ }^{\text {a }}$	5	\because	\therefore	\because	3%.	号
		53.0	$\because \square$	$\because 0$ $\because 0$	$\because \cdot$	\％．	30.	\％－
	1307－150\％	Si．0	\because	\cdots	\because	\cdots	39.	36.
	1598－1573	31.0	；	\because	\because 。	－4．	52．	$=2$.
	1909－i 5i：	$\therefore 1.5$		\because	－3．	－\cdot ．	\bigcirc	\because ．
	1970－1572	$\rightarrow 3.8$	： 9.4	：：c	ミ心．	5\％．	ro．	56.
	19：1－297	4.4 .3	$\cdots \mathrm{co}$ ？	\therefore ，	32．	\therefore ，	\therefore	\because
	194i－1：7，	\ldots.		：\cdot \％	． 7.	\cdots	\because	$\therefore \%$
	5442．：${ }^{\text {a }}$	＇，．	\therefore	\therefore.	$\because: 7$	$\because \%$	\because	\cdots
	！，93－．： 19	1． 5	\because	\cdots	$\therefore 1$.	\cdots 。	37	$\because \%$
	$\therefore ¢ 54-\mathrm{i}=1$ ！	©	$\because \cdot$	\because	\cdots	－＂．	$\because \%$	\because ，
		$\because 1$	\therefore	\because	\because	\ldots	\cdots	1.

Table 10. (Continued)

Table 11. Actuarial trend analysis of office, Career College Graduates

toha state university actuarial trend analysis							
	1 NJICAT	eo averag	GE LIFE	ACTUAL	indicatez	PETIREMEATS	F! TrED
ajetigement	FIRST	SECONC	THIR	RETIREMENTS	FIRST	SECOND	THIED
EANE	ceifee	degree	DEGĖE	fitteo	degree	aEgree	cegree
1961-1903	127.4	130.6	9.6	10.	10.	10.	10.
1962-1564	91.6	2.9	2.9	21.	21.	21.	21.
1963-1965	85.4	2.9	49.6	37.	37.	37.	37.
1964-1966	84.6	3.6	54.9	52.	52.	52.	52.
1565-1567	d2. ${ }^{\text {d }}$	4.3	66.4	56.	56.	56.	56.
1966-1568	77.5	5.2	12.1	59.	59.	59.	59.
1967-1969	77.7	9.4	5.9	55.	55.	55.	55.
1568-1570	56.0	4.6	45.9	74.	74.	74.	74.
1965-1971	65.5	6.1	59.8	65.	65.	65.	65.
1961-1571	70.5	6.3	62.7	165.	165.	165.	165.
1962-1571	70.5	6.3	62.7	165.	165.	165.	165.
1963-1571	70.3	6.2	-2.0	161.	161.	161.	161.
1964-1971	69.1	6.1	60.4	155.	155.	155.	155.
1965-1571	68.4	6. C	59.7	14.	144.	14.	144.
1566-1571	69.7	6.2	52.0	124.	124.	124.	124.
1962-1971	68.9	$6 . \mathrm{E}$	62.6	103.	103.	103.	103.
1968-1971	64.5	6.0	50.6	88.	88.	88.	88.
1969-1971	65.5	6.1	59.8	65.	65.	65.	65.
1970-1971	58.4	5.8	52.7	48.	48.	48.	48.
1971-1571	91.7	10.5	7.7	14.	15.	14.	14.

Table 12. Historical arrangement of Utility Meter Readers

Table 12. (continued)

Table 12. (Continued)

LISLGERICAL AFDANGEMENT OF MORTALITY DATA OAGE 5 OF S
 RETIGEYEVTS : HEが FEJN

Table 13．Actuarial trend analysis of Utility Meter Readers

	ioma stare cilverjity
	－ctlarial trevic avalrsis
citil－u	

					\because こ．	マケ：	rioc
	$=19 \mathrm{ST}$	¢ ミ：ここ	¢－1\％：		－Ťら「	ミごべ，	r．．．：
\therefore ANC	こecres	ここのが，	こミ3¢	F：r：	$\because-3 \dot{r}=$ \％	ごアめ！	ごうご
：56F－1：37	$6+4$	－3．6	$: 3.0$	： 0	：t．	： 6.	18.
1570－1972	73.4	－0．t	＋3．0	14.	i4．	if．	14.
1971－1973	－＇t．＇	14.7	19.4	22.	＜2．	＜3．	23.
－969－1573	51.5	12.7	13.1	36.	36.	37.	37.
i97C－1573	43.7	：く．0	23.6	3 J	31．	31.	32.
1971－1573	54.4	14.7	19.2	22.	22.	23.	23.
1972－1973	39.7	i2．s	16.2	20.	20.	21.	21.
1973－1573	24.2	10.1	11.3	16.	16.	17.	17.

Table 14. Historical arrangement of Utility Mechanics

Table 14. (Continued)

Table 14. (Continued)

MISTORICAL ARRANGEMENT OF MORTALITY OATA UTIL-MEC

								$\begin{aligned} & \text { FVIVING } \\ & \text { RETIR } \end{aligned}$	Aivt by aje ENTS ThERE	$\begin{aligned} & \text { JAVUARY } \\ & \text { FROM } \end{aligned}$				
	YEAR	37.5		38.5		3¢.5		40.5	41.5	42.5	43.5		44.5	
	1969		0.		0.		0.	v.	0.	3.		\therefore.		0.
			i.		0.		0.	0.	0.	0.		j.		0.
	1970		0 .		0.		0.	0.	0.	0.		0.		1.
			0.		0.		0.	0.	0 .	0.		0.		1.
	1971		0.		0.		0.	0.	0.	0.		0.		0.
			0.		0.		0.	0.	0.	0.		0.		0.
	1572		0.		0.		0.	0.	0.	0.		J.		0.
			0.		0.		0.	0.	0.	0.		0.		0.
	1973		0.		0.		0.	\bigcirc.	ù.	0.).		0.
			0.		0.		0.	0.	0.	0.		0.		0.
roral	EXP.		0.		0.		0.).	0 。	0.		1.		1.
TOTAL	RET.		0.		0.		0.	D.	0.	0.		0.		1.

Table 15. Actuarial trend analysis of Utility Mechanics

iona state university actlarial trend analysis util-mec							
	l ndicateo average life FIRST SECONC THIRO			$\begin{aligned} & \text { ACTUAL } \\ & \text { RETIREMENTS } \\ & \text { FITIED } \end{aligned}$	$\begin{aligned} & \text { INOICATEJ } \\ & \text { FIRSI } \\ & \text { OEGREE } \end{aligned}$	hetiremenis SECOHO DEG®E	$\begin{gathered} \text { FIITED } \\ \text { THIF } \\ \text { JEGREE } \end{gathered}$
Retirement band	OEGRE	secuine	OEGXE				
1969-1971	46.8	11.1	10.5	17.	17.	17.	18.
1970-1972	53.2	12.4	12.4	15.	15.	16.	16.
1571-1973	108.6	21.1	33.9	7.	7.	7.	7.
1969-1973	63.0	13.5	13.1	23.	23.	24.	25.
1970-1573	57.2	12.1	11.9	20.	20.	22.	22.
1971-1973	103.6	21.1	33.9	7.	7.	7.	7.
1972-1573	92.4	20.0	92.5	0.	6.	6.	7.
1973-1973	52.6	11.2	39.9	5.	5.	6.	6.

Table 16. Historical arrangement of Utility Coal and Ash Handlers

Table 16. (Continued)

Table 16. (Continued)

HISTOPICAL ARRAVGEMEST EF MORTALITY OATA

 UTIL-CAH| | YEAR | 37.5 | 33.5 |
| :---: | :---: | :---: | :---: |
| | 1969 | 0. | 3. |
| | | c. | J. |
| | 1970 | 0. | J. |
| | | 0. | 0. |
| | 1971 | c. | 0. |
| | | 0. | 0. |
| | 1972 | 0. | 0. |
| | | C. | 3. |
| | 1973 | 0. | 0. |
| | | 0. | C. |
| JGTAL | EXP. | 0. | 0. |
| tutal | RET. | 0. | 0. |

SJRVIVING D:AVT aY AFE JANUARY? EETICEMEMTS THERE FRON

Table 17．Actuarial trend analysis of Utility Coal and Ash Handers

IOma state university actuarial taend analysis								
util－CAh								
	：Noにa	éc atega	E life	actual	y Molcateo		$\because \mathrm{i}+\mathrm{tec}$	
Q et losmers	Fiost	SECONO	THIas	PETREMEnte	fifst	こ－こに	－41F0	
BANE	CuTes	ここifet	begrse	fitted	Feope		gesafe	\pm
1969－1911	5.4	5.4	22.3	36.	26.	37.	37.	0
1970－1972	12.0	7.4	23.5	41）．	41.	42.	42.	
1971－1973	23.9	9.3	22.3	43.	44.	46.	46.	
1969－1973	14.7	7.2	23.9	68.	76.	72.	71.	
1970－1973	20.5	8.5	26.0	54.	56.	53.	58.	
1971－1973	23.9	9.3	22.8	43.	44.	46.	46.	
1572－197j	29.6	9.1	23.6	32.	34.	35.	35.	
1973－1973	48.3	11.5	31.7	14.	15.	15.	16.	

Table 18. Historical arrangement of Utility Ironworkers

Table 18. (Continued)

HISTOFICAL AF QANGEMENT OF MORTALITY DATA
PAGE 5 DF 5
util-in

Suf viving plant er age january 1 QCT!OEMENTS THETE FROM

	VEAR	37.5	38.5
	1569	0.	0.
		0.	0.
	1570	0.	0.
		0.	0.
	1571	0.	0.
		0.	0.
	1972	Q.	0.
		C.	0.
	1573	0.	0.
		0.	0.
rotal	EXP.	0.	0.
TOTAL	RET.	0.	0.

Table 19．Actuarial trend analysis of Utility Ironworkers

IOWA STATE UNIVEESITY
ACTUARIAL TQEVI AVALYSIS

ごししー！

＊	－かJISATEL AVEFAGEl：＝E			AこTいムL	INDICATES	fetireyent	citten
QETIREMENT	$=15 \mathrm{ST}$	S？Cum：	THIRO	EET12EMFNTS	FIFST	SECOND	THIFS
OANO	ごGREE	JEGREE	DEGREE	FIttej	OECRES	Derces	degree
1569－1571	0.8	0.3	1.0	9.	9.	9.	9.
1970－1972	1.3	1.2	1.4	7.	7.	7.	7.
1971－1973	50.1	0.6	67.5	6.	6.	129．	6.
1969－1973	30.8	47.8	62.7	12.	12.	12.	12.
1970－1973	36.6	47.3	0.6	\％	9.	9.	9.
1971－1973	50.1	0.6	67．j	6.	6.	128.	6.
1972－1973	83.7	106.4	106.7	3.	3.	3.	3.
1973－1973	53.1	08.0	76.4	2.	2.	2.	2.

Table 20. Historical arrangement of Utility Laborers

(penutquoj) ${ }^{\circ}$ oz ətqe.t

Table 21．Actuarial trend analysis of Utility Laborers

IOHA STATE UNIVEFSITYACTUARTAL IASV ANALYSIS							
util－las							
	：ロ！es	En Avesa	Elife	くごイッ	－Sacsers	$\because=$ ¢！¢MENTS	fitten
RETIFEMEN：	－12ST	：¢Cone	T＋100	PETIZEMENTS	$\mathrm{fins}^{\text {a }}$	；ECND	Talse
EAN	ご50¢	zersice	－5625	fites	3¢gaje	ว¢ビEE	degres
1969－1971	1.9	2.1	2.0	94.	96.	97.	97.
1970－1972	＋． 1	4.1	4.0	62.	53.	65.	65.
1971－1973	12.4	9.1	6.4	44.	45.	46.	48.
1505－1973	3.5	3.9	3.2	124.	127.	129.	130.
1570－1973	7.3	6.2	4.8	75.	77.	79.	80.
1571－1973	12.4	9.1	6.4	44.	45.	46.	48.
1972－1973	11.6	9.6	6.3	30.	30.	31.	33.
1973－1973	33.1	13.5	7.9	13.	14.	14.	15.

Table 22. Historical arrangement of Utility Union Employees

Table 22. (Continued)

Table 22. (Continued)
HISTORICAL ARRANGENENT OF MORTALITY OATA
UTIL-UNI

Table 23. Actuarial trend analysis of Utility Union Employees
loma state university
UTIL-UNI

$\begin{aligned} & \text { RET IR EMENT } \\ & \text { BAND } \end{aligned}$	indicated average life			$\begin{aligned} & \text { ACTUAL } \\ & \text { RETIREAENTS } \\ & \text { FITTED } \end{aligned}$	$\begin{aligned} & \text { INDICATED } \\ & \text { FIRSY } \\ & \text { DEGREE } \end{aligned}$	RETIREMENTS SECOND DEGREE	$\begin{gathered} \text { FITTED } \\ \text { THIRD } \\ \text { OEGREE } \end{gathered}$
	FIRST	SECONO	THIRD				
	DEGREE	OEGREE	DeGree				
1569-1971	13.8	7.9	7.8	819.	819.	819.	819.
1970-1972	17.1	11.1	11.0	607.	607.	607.	612.
1971-1973	27.5	9.8	9.1	646.	648.	648.	677.
1969-1973	18.5	8.1	8.0	1296.	1296.	1296.	1312.
1970-1973	24.1	9.4	9.2	893.	893.	893.	929.
1971-1973	27.5	9.8	9.7	646.	648.	648.	677.
1572-1973	24.2	8.4	8.2	477.	482.	492.	516.
1973-1973	17.5	6.3	6.3	286.	296.	310.	320.

Table 24．Mature Pemales Over Age 30，additions，retirements and balances

Mature femal 5 ，over age 30 wrein mikec．

ACCOLNT CCNTKこL 〔AZE

AO．OF TEST POINTS＝ 16 INTERVAL EETNEENTEST POIVTS＝U LAST TEST POINT＝ $1 S T 2$ SPR METHOD＝3AL．
INPUT CATA＝ACCIT．SAC BAL．LATEST BALANCE＝ 1972
INPUT METHCO＝GARD

PLANY ACEITICNS

－－－－－－－－～－－－－－－－

YEAR	AC：ITICR	yeta	anolviluns	YEAR	4.301513 .5	YEAP	AOOSTIONS
1557	16.	1701	26.	1965	20.	1969	72.
1558	32.	1962	32.	1966	¿5．	1970	46.
1959	36.	1963	27.	1967	30.	1971	38.
156こ	う三。	190.	31.	1963	37.	1972	36.

Table 24．（Continued）

YEAR	RETIこEVEVTS	YEAF	betinjments	YEAR	FミTI2ミMENTS	YEAF	fミーこマことこれTS
1557	3.	1961	21.	1965	18.	1969	26.
$!958$	11.	1962	16.	1960	12.	1970	31.
1559	i4．	1963	15.	1967	20.	1971	$: 6$ 。
1560	11.	1964	23.	1963	20.	1972	こi．
Plant ealances							
YEAF	EALANCES	YEAR	3ALANCES	YEAR	BALANCES	YEAF．	3AL ANCES
1557	13.	1961	88.	1965	126.	1969	212.
1550	34.	1962	104．	1966	139.	1970	227.
1959	56.	1763	116.	1967	149.	1971	？ 49.
1960	83.	1964	124.	1968	166.	1972	264.

Table 25. Hature Pemales Over Age 30, comparison with Iowa curves

nC. OF TEST FOLiNTS = 10 Simulatec balances yethe;			intarval betheen tesi points	LAST REST POINT $=1972$		
cispersica	averace jer	ervice life	SUM JF SEUARES DIFF.	INOEX OF	of vafiation	fet. exp. index
04	3.4	YRS.	0.2442 E 34		91	83.42
03	6.9	YRS.	0.3430 E 04		108	88.45
02		YRE.	0.6042 E 04		144	96.53
L0		YR S.	0.7251 E 04		158	99.11
10.5	5.6	Y8S.	0.329+E 34		169	79.65
SC		Yris.	$0.8390 \mathrm{E} \mathrm{O}_{4}$		170	100.00
41	5.	Y̌s.	$0.9374{ }^{\text {E }} 04$		180	79.93
S-. 5		YR ${ }^{\text {\% }}$	0.9434 E 04		180	100.00
RO. 5		YRS.	$0.9592 E 04$		182	100.00
Li.5	5.7	if S.	0.1223535		188	100.00
so		YкS.	$0.1057 E 0$		191	100.30
R1		YRS.	-.1393E 05		194	100.03
12	5.4	YRS.	0.1113 E 35		196	100.00
S0.5		Yf $\mathrm{Y}_{\text {S }}$.	0.1134 E 05		198	100.00
R1. 5	5.4	Yńs.	0.1179 E 5		202	130.70
Sl		YR 5.	0.1213805		204	130.30
R2	5.2	YRS.	$0.1271 E 05$		209	100.00
S1. 5		YRS.	$0.1275 E^{\text {O }}$		210	109.30
13.		YRS.	0.1280 E 5		210	100.00
82.5	5.2	YRS.	0.1336 E 25		215	100.00
52	5.2	yfis.	0.153 E 05		215	100.00
R3		yrs.	0.1403 E 05		220	100.30
53	5.1	YRS.	0.1424505		222	100.00
14		YRS.	0.1436 E 05		222	100.30
R4	5.1	Yps.	0.1487 E 05		226	100.00
54		Yrs.	0.1508 E J5		228	100.00
15	5.0	YFS.	0.1513 E 05		229	100.00
RS		YKS.	0.1549 ES		231	100.00
S5	4.9	YR S.	0.1559 ES		232	100.00
S6	4.9	YKS.	0.1597 E		235	100.00
So	5.4	4 YRS.	0.1653 E 05		237	100.30

Table 26. All Home Office Employees, excluding part time, additions, retirements and balances

Table 26. (Continued)

Table 27. All Home office Employees, excluding part time. comparison with Iowa curves

Table 28. All Home Office Employees, including part time, additions, retirements and balances

Table 28. (Continued)

Table 29. All Home Office Employees, including part time, comparison with Iowa curves

Table 30. Manufacturing Unit Hourly, additions, retirements and balances

Table 30．（Continued）

YEAR	ミ：：：：\％．！	1：85		：－：	：こ－！ċve：		
＊＊＊＊＊	\therefore ，	$\square \cdots$	－5\％．	$\therefore \mathrm{Sor}$	－！5．	1971	こうヶ．
1366	，$=\therefore$ 。	1765	－ 3 ．	： 37	らこと。	© 77 ？	625．
						1－7\％	

plant ealdices

$Y \leq 4 R$	三ことAMCE：	$1 ミ: 2$		1513	二ataces	$Y E:=$	$\therefore A!A M C E S$
＊ 4 47\％	ico：	：0：	二a！		$\leq 3: \%$	$\because ;$	こ¢たく。
：ラot		：$:=$	231：。	： 77	2\％里	i．\quad ，	2468．
						$\because \because$	$\begin{array}{r} 351 . \\ \vdots \end{array}$

Table 31．Manufacturing Unit Hourly，comparison vith Iowa curves

simulatec balances methoo				
DISPERSIG：	AVERAGE SEPVICE LIFE	SUM JF jajties dirf．	INOEX SF vasiatlos	
L2	4．7 YKS．	\therefore－E－045 $こ$	154	ミ7．$: ~$
51	4.6 YRS．	0．5シ5． 30	156	3：．
L1．5	4．7 YRS．	\therefore－こご天 Ot	156	57.26
51.5	4.6 YRS．		157	75
SO． 5	4.6 YRS．	\therefore 隹ip 20	159	9 ¢．
52	4.5 YRS．		159	39．97
L1	4.3 YRS．	2．0ミ5jミ つ¢	10：	．4．
L3	4.6 YRS．	U．5こうつ下 J＝	160	75．3：
R2	4.6 YFS．	3．03d：$=$ Vo	161	7： 3 ？
52	4.6 YFS．	j．53ラチ＝ 20	161	；3．7i
0.2 .5	4.5 YFS．		162	ラッ．
Q1．5	4.6 YFS．		153	〒j．
23	4.5 YFS．	C－A：7： 20	165	130.2
51	4.6 YRS．	\therefore ごここ 26	165	\％．${ }^{\text {a }}$
13：	4.9 Yr 5 。	ごロシこう三 〕t	16%	jJ． 37
53	4.5 YFS．	う．गう¢JE Jo	167	7\％．
14	4.5 YK S．	2．72JJE 0t	171	97.31
S－． 5	4.7 YKS．	2．7＜0er it	171	33．j？
F4．	4.3 Y＝	3．7とうJ 06	172	132.2
Fこ．う	4.7 YFS．	3.7403 E 3 s	174	うこ．7：
Li	3.1 Y ${ }^{\text {a }} 3$.	2．14， 0 ¢	174	71．：
34	4.5 Y 5 S．	$\therefore \mathrm{ilcozr} 36$	175	$1: \therefore \%$
L5	4.6 Yris．	3．796：$=26$	180	79.75
F5	4.5 YF 3.		181	：$\because .0):$
Si	4.2 YF S．	\therefore－ここ：	183	73．7．
Ei	3.4 Y？	－：－3jこここ	184	1\％．ロン
S5	4．t $Y=5$.	¢，j： 3	185	130．j
¢6	4.6 YF 3.	\therefore－ $57+5$ \％	187	$\therefore: \therefore:=$
ご	$3 . \therefore \quad y_{0}$	$\therefore: 5 \% \therefore$	195	$\because, ~$ ．
54	9.3 raj		197	$\because: 7$
si	3.3 Ye．s．	$\therefore \therefore: 71=7$	ave	！JJ，：

Table 32. Career College Graduates chi-square tests on retirenent rate data

Year	Age Int.	actual Retire.	Expect. Retire.	No. in Orig. Group	```Prob. of Retire.```		$=\frac{21}{x^{2}}$	$x_{-90}^{2} \quad x^{2} .99$
1966	0-1	9	11.5	43	. 2663	6	4.80	10.616 .8
	1-2	14	9.6	47	. 2040			
	2-3	3	3.6	28	. 1296		04.	4 ASL
	3-4	9	1.6	20	. 0801			
	4-5	2	1.1	20	. 0532			
	5-6	0	0.4	11	. 0387			
1968	0-1	7	7.9	38	. 2088	8	8.09	13.420 .1
	1-2	6	4.6	26	. 1772			
	2-3	7	4.1	31	. 1312			
	3-4	4	2.4	27	. 0902		04.	5.2 ASL
	4-5	3	1.6	25	. 0624			
	5-6	1	0.7	15	. 0451			
	6-7	1	0.6	16	. 0344			
	7-8	1	0.3	10	. 0276			
1970	0-1	9	9.8	36	. 2725	10	52.85	16.023 .2
	1-2	15	8.9	43	. 2061			
	2-3	5	3.2	25	. 1288			
	3-4	0	1.4	18	. 0789		04.	3.9 asL
	4-5	2	1.0	19	. 0524			
	5-6	4	0.8	21	. 0382			
	6-7	4	0.7	22	. 0302			
	7-8	2	0.4	14	. 0254			
	8-9	1	0.3	13	. 0224			
	9-10	1	0.2	9	. 0205			

Table 33. Career College Graduares chi-square tests on original group data

Year	Age Int.	$\begin{aligned} & \text { Actual } \\ & \text { Retire. } \end{aligned}$	Expect	No. in Orig. Group	```Prob. Of Retire.```	df	$\operatorname{cal}^{\frac{1}{2}}$	$\mathrm{X}^{2} .90$	$x_{.99}^{2}$
1961	0-1	12	10.1	91	. 1111	9	11. 71	14.7	23.2
-63	1-2	14	9.6		. 1055				
	2-3	6	8.8		. 0966				
	3-4	7	7.7		. 0849		04.	10 ESL	
	4-5	8	5.6		. 0720				
	5-6	3	5.4		. 0596				
	6-7	2	4.5		. 0489				
	7-8	5	3.7		. 0401				
	8-11	2	7.7		. 0846				
	11 up	32	27.0		.2967				
1964	0-1	17	19.2	139	. 1382	6	12.62	10.6	15.8
-63	1-2	30	17.8		. 1281				
	2-3	16	15.6		.1119				
	3-4	9	12.8		. 0921		04.8	8 ASL	
	4-5	7	10.1		. 0728				
	5-6	4	7.9		. 0567				
	6 up	56	55.7		.4005				
1967	0-1	19	16.4	119	. 1382	3	12.21	6.2	11.3
-69	1-2	27	15.2		. 1281				
	2-3	9	13.3		. 1119		04.8	8 ASL	
	3 up	64	74.0		.6220				

Table 34. Manufacturing Marketing =hi-square tests on reticement rate data

Table 34. (Continued)

Table 34. (Continued)

Table 34. (Continued)

No. in Prob.
Age Actual Expect. orig. of
Year Int. Retire. Retire. Group Retire. df X^{2} X $X^{2} X^{2} 90$

1970 0-1	1	3.4	35	. 0960	26	34.34	35.6	45.6
1-2	4	3.7	40	. 0922				
2-3	8	2.1	24	. 0863				
3-4	1	2.1	27	. 0783		04.	11.5	ASI
4-5	1	1.5	21	. 0690				
5-6	1	1.4	24	. 0594				
6-7	0	0.7	13	. 0503				
7-8	1	0.7	17	. 0424				
8-9	0	0.4	11	. 0357				
9-10	1	0.4	13	. 0303				
10-11	1	0.4	14	. 0259				
11-12	0	0.3	13	. 0223				
12-13	0	0.1	6	. 0195				
13-14	1	0.1	6	. 0172				
14-15	0	0.2	13	. 0153				
15-16	0	0.1	5	. 0138				
16-17	0	0.2	14	. 0126				
17-18	0	0.2	13	. 0115				
18-19	0	0.1	6	.0107				
19-20	0	0.1	7	. 0100				
20-21	0	0.1	7	. 0094				
21-22	0	0.1	16	. 0089				
22-23	0	0.1	14	. 0084				
23-24	0	0.1	12	. 0080				
24-25	0	0.0	6	. 0077				
25-29	0	0.1	4	. 0286				

Table 35. Manufacturing Marketing chi-square tests on original group data

Table 35. (Continued)

Year	Age Int.	Actual Retire.	Expect. Retire.	$\begin{aligned} & \text { No. in } \\ & \text { orig. } \\ & \text { Group } \end{aligned}$	```Prob. of Retire.```		$=a l c$	$\mathrm{x}^{2} 90$	$\mathrm{x}^{2} .99$
1952	0-1	1	8.0	114	. 0699	12	17.14	18.5	26.2
-62	1-2	5	7.8		. 0682				
	2-3	14	7.5		. 0657				
	3-4	9	7.1		. 0624		04.	16 a SL	
	4-5	7	6.6		. 0583				
	5-6	7	6.1		. 0536				
	6-7	4	5.5		. 0485				
	7-8	5	5.0		. 0435				
	8-9	5	4.4		. 0386				
	9-10	2	3.9		. 0341				
	10-11	5	3.4		. 0301				
	11-12	1	3.0		. 0266				
	12 un	49	45.7		. 4005				
1961	0-1	2	5.0	54	. 0929		14.33	16.0	23.2
-64	1-2	4	4.8		. 0894				
	2-3	9	4.5		. 0839				
	3-4	7	4.1		. 0767		04.	12 ASL	
	4-5	1	3.7		. 0682				
	5-6	4	3.2		. 0591				
	6-7	0	2.7		. 0505				
	7-8	2	2.3		. 0428				
	8-9	2	2.0		. 0362				
	9-10	3	1.7		. 0308				
	10 up	20	20.0		. 3697				

Table 35. (Continued)

Year	$\begin{aligned} & \text { Age } \\ & \text { Int. } \end{aligned}$	Actual Retire.	Expect. Retire.	$\begin{aligned} & \text { No. in } \\ & \text { Orig. } \\ & \text { Group } \end{aligned}$	```Prob. Of Retire.```		$\operatorname{cal}_{x^{2}}$	$x^{2} .90$	$x^{2} .98$
1984	0-1	1	9.5	85	. 1111	7	19.72	12.0	18.5
-67	1-2	11	9.0		. 1055				
	2-3	11	8.2		. 0966				
	3-4	12	7.2		. 0849		04,	10 ASL	
	4-5	12	6.1		. 0720				
	5-6	3	5.1		. 0596				
	6-7	5	4.2		. 0489				
	7 up	30	35.8		. 4215				
1967	0-1	4	11.7	126	. 0929	4	8.37	7.71	3.3
-70	1-2	15	11.3		. 0894				
	2-3	15	10.6		. 0839		04.	12 ASI	
	3-4	11	9.7		. 0767				
	4 up	81	82.8		. 5575				

Table 36. Utility Union Employees, chi-square tests on retirement rate data

Table 37. Utility Union Employees, chi-square tests on original group data

